首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
研究促卵泡激素(FSH),人绒毛膜促性腺激素(hCG)对昆明白小鼠卵母细胞成熟和卵丘扩展的影响,以及体外培养时卵丘扩展与卵母细胞成熟之间的关系,FSH可以明显促进次黄嘌吟(HX)抑制条件下的卵丘-卵母细胞复合体CEO卵母细胞成熟及卵丘扩展,其最佳作用剂量为100IU/L,且FSH作用30分钟即可以使CEO获得恢复减数分裂的信息,在HX存在的条件下,FSH处理后10hr,CEO卵丘明显扩展,而生发泡破裂(GVBD)则在16-20hr明显增加,所有卵丘未扩展的CEO中卵母细胞均未发生GVBD,低剂量hCG单独或与FSH共同存在,对CEO卵母细胞成熟及卵丘扩展均无明显影响;高剂量hCG可以部分抑制FSH对卵母细胞成熟的促进作用,结果表明:FSH明显促进CEO卵母细胞成熟及卵丘扩展,而hCG却不具有此作用,体外培养条件下(含次黄嘌呤),卵丘扩展是卵母细胞成熟的前提条件,但卵母细胞成熟并不需要卵丘完全扩展。  相似文献   

2.
夏国良 《动物学报》1996,42(4):408-413
实验研究了小鼠卵母细胞体外过程中卵丘-卵母细胞间的相互作用。实验小鼠为雌性B6D2杂交一代。激素处理48小时后分离出卵后天和卵母细胞复合体,并培养在含有次黄嘌呤的培养液中。24小时后检查卵母细胞核成熟情况。  相似文献   

3.
本实验利用卵母细胞的体外培养模型,将小鼠卵丘-卵母细胞复合体(CEO)和去卵丘卵母细胞(DO)在体外培养,系统研究了促性腺激素(FSH、hCG)诱导小鼠卵母细胞减数分裂的机制。结果显示,FSH能剂量依赖性地诱导CEO恢复减数分裂(Fig.1),但对DO无影响;hCG对CEO、DO皆无效果(Fig.2);用FSH预处理CEO时间达到1小时后,就能显著诱导卵母细胞成熟,2小时后作用达到最大,不再增强(Fig.3);用FSH处理CEO2小时及24小时的培养液,能诱导DO恢复减数分裂,但预处理卵丘细胞24小时的培养液,并不能诱导DO恢复减数分裂(Fig.4A);这种培养液在70℃下30分钟后,仍能刺激DO成熟(Fig.4B);甾醇类物质合成抑制剂酮康唑,可剂量依赖性地抑制FSH的促减数分裂恢复作用(Fig.5)。这些结果说明,FSH可能诱导卵丘-卵母细胞复合体中的卵丘细胞分泌一种促减数分裂恢复物质;该物质用于卵母细胞,诱导其恢复减数分裂而成熟;这种物质可能是一种甾醇类物质。  相似文献   

4.
本实验利用猪卵母细胞体外无血清培养技术,选用猪卵泡液中自然存在的次黄嘌呤(HX)作为卵母细胞自发成熟的抑制剂,研究了促性腺激素对猪卵丘细胞-卵母细胞复合体(CEO)减数分裂恢复的具体作用。CEO在含有不同浓度的促性腺激素(FSH,hCG,FSH+hCG)的培养液中培养24h,观察卵母细胞减数分裂恢复(GVBD)情况。实验结果如下:1.FSH(1-500IU/L)能够明显刺激CEO克服HX的抑制作用而恢复减数分裂(P<0.05),该作用具有剂量依赖性;2.hCG(1-500IU/L)对CEO减数分裂的恢复无明显作用;3.hCG(10-500IU/L)与FSH(10,100IU/L)无协同作用。上述结果表明,猪CEO减数分裂的恢复可能主要依赖于FSH的作用,该作用能使猪卵丘细胞产生一种或几种阳性因子,作用于卵母细胞,从而克服HX的抑制作用而恢复减数分裂。hCG无明显作用,可能是因为卵丘细胞上没有LH受体或LH受体的数量不足  相似文献   

5.
研究了蛋白质合成抑制剂亚胺环已酮(CHX)对猪卵母细胞体外成熟过程中的GVBD、染色质凝集、MⅡ期成熟及卵丘细胞扩展的作用。结果表明:(1)培养液中添加CHX,可抑制卵母细胞GVBD的发生,而且此作用是浓度依赖性的,但CHX的抑效果是完全可逆的;(2)在含10μg/mlCHX液中分别培养0、6、12和24h后转入正常培养液再继续培养至48h,卵母细胞成熟率分别为84.1%、77.1%、48.9%和27.8%;(3)正常培养液中培养0、6、12、24、36和48h后,再转入浓度为10μg/mlCHX液中继续培养至48h,卵母细胞成熟率分别为0、0、0、31.3%、65.4%和79.5%;(4)CHX对卵丘细胞扩展的影响培养时间延长而增强,在CHX中处理时间为16h或更长,完全抑制卵丘细胞的扩展。  相似文献   

6.
绵羊卵泡成分对卵母细胞体外减数分裂调控的研究   总被引:1,自引:0,他引:1  
哺乳动物卵巢中的卵母细胞一直处于减数分裂的停滞状态,卵泡内各成分被认为是产生抑制因子的主要来源。本研究以绵羊卵泡各成分为研究对象,用共培养的方法对卵丘细胞、颗粒细胞、膜细胞在卵母细胞体外减数分裂过程中的作用加以探讨。结果表明:1.卵泡整体及卵泡分泌物在体外可以有效地维持减数分裂停滞,经过24h培养,这两个处理组中,处于GV期的卵母细胞分别为69.6%和49.1%。经抑制处理后的卵母细胞脱离抑制环境后可以继发成熟,MⅡ比率可达88.9%。去掉卵丘细胞的裸卵其减数分裂过程不能被卵泡分泌物有效抑制,24h培养后其GV期比例为17.8%。以上结果说明卵泡中的抑制因子主要是通过卵丘细胞束发挥其调控作用的。2.用颗粒细胞与卵母细胞共培养,结果发现具有颗粒细胞卵丘细胞缝隙连接的卵母细胞(COCGs)在培养24小时后47.4%达到MⅡ,与在不具有细胞连接的总浮颗粒细胞中共培养的卵母细胞之间存在无显差异,无论是紧密连接的颗粒细胞层还是悬浮在培养液中的颗粒细胞都不能有效抑制生发泡破裂(GVBD)的发生,只能将卵母细胞抑制在MⅡ以前的各个时期。以上结果说明颗粒细胞在体外分泌抑制图子的活力大大下降。3.卵泡膜细胞具有分泌抑制成熟分裂因子的能力,与膜细胞层共培养的卵母细胞在8h和24h时,其GV期的比例为34.4%和32.7%,显高于没有膜细胞层的对照组(4.5%和1.1%)。综上所述,绵羊卵泡中的抑制因子不仅来自于颗粒细胞,而且膜细胞也参与了成熟分裂的抑制,这些细胞在体外仍具有分泌抑制因子的能力,只是与体内分泌能力有所不同。  相似文献   

7.
猪卵丘细胞对卵母细胞膜电位影响的研究   总被引:2,自引:0,他引:2  
本文应用细胞内微电极技术,测试分析了猪卵丘细胞对卵母细胞膜电位的影响。结果表明,卵母细胞周围卵丘细胞的数量和形态特点的差异对卵母细胞膜电位有显著影响,A、B、C三类卵母细胞的膜电位有极显著差异。A类和部分B类母细胞的膜电位为负值,C类和另一部分B类卵母细胞的膜电位为正值。  相似文献   

8.
影响山羊体外受精的因素   总被引:5,自引:0,他引:5  
以屠宰山羊卵母细胞为材料研究了公羊个体、附睾不同部位精子、成熟培养和受精时卵丘存在与否、卵丘扩展程度及卵龄对山羊体外受精的影响。结果表明 :1)不同公羊精液在受精、卵裂和桑椹 /囊胚率上都有显著差异 ;2 )附睾尾精子和鲜精的受精、卵裂和桑椹 /囊胚率无显著差异 ,但显著高于附睾体和附睾头精子 ;3)成熟培养 2 4和 2 7h卵母细胞的的桑椹胚 /囊胚率显著高于培养 2 1和 30h卵母细胞 ;4 )卵丘扩展 3和 4级卵母细胞受精和桑椹胚 /囊胚率显著高于扩展 0和 1级卵母细胞 ;5 )成熟培养前机械去卵丘严重影响卵母细胞体外受精和桑椹胚 /囊胚率 ;6 )受精前完全去掉卵丘显著影响桑椹胚 /囊胚率  相似文献   

9.
研究了蛋白质合成抑制剂亚胺环己酮 (CHX)对猪卵母细胞体外成熟过程中的GVBD、染色质凝集、MⅡ期成熟及卵丘细胞扩展的作用。结果表明 :( 1)培养液中添加CHX ,可抑制卵母细胞GVBD的发生 ,而且此作用是浓度依赖性的 ,但CHX的抑制效果是完全可逆的 ;( 2 )在含 10 μg/mlCHX液中分别培养 0、 6、 12和 2 4h后转入正常培养液再继续培养至 4 8h ,卵母细胞成熟率分别为 84 1%、 77 1%、 4 8 9%和 2 7 8% ;( 3 )正常培养液中培养 0、 6、 12、 2 4、 3 6和 4 8h后 ,再转入浓度为 10 μg/mlCHX液中继续培养至 4 8h ,卵母细胞成熟率分别为 0、 0、 0、 3 1 3 %、 65 4 %和 79 5 % ;( 4 )CHX对卵丘细胞扩展的影响随培养时间延长而增强 ,在CHX中处理时间为 16h或更长 ,完全抑制卵丘细胞的扩展  相似文献   

10.
本文研究了ROS(Roscovitine)和丁内酯-Ⅰ(ButyrolactoneⅠ,BL-Ⅰ)两种细胞周期依赖性激酶抑制剂对山羊卵母细胞减数分裂恢复的抑制作用,并研究了抑制对卵母细胞成熟、激活和发育的影响。结果表明:ROS和BL-Ⅰ对山羊卵母细胞减数分裂恢复的抑制作用具有浓度依赖性;200μmol/LROS、100μmol/LBL-Ⅰ、100μmol/LROS+6.25μmol/LBL-Ⅰ和50μmol/LROS+25μmol/LBL-Ⅰ都能有效抑制山羊卵母细胞减数分裂的恢复,24h的抑制率分别为78.4%、80.9%、80.3%和77.8%。用ROS和BL-Ⅰ抑制24h后转为正常培养24h,各处理组卵母细胞的成熟率(分别为81.3%、81.9%、83.2%和85.2%)与对照组(83.0%)无显著差异;成熟卵母细胞的化学激活率分别为93.3%、96.2%、92.5%和90.5%,与对照组(97.8%)无显著差异。然而,抑制处理后卵母细胞的卵裂率和桑椹胚率降低,未能发育到囊胚。ROS和BL-Ⅰ抑制山羊卵丘扩展,并且转为正常培养后卵丘不能再扩展。ROS和BL-Ⅰ能够浓度依赖性地抑制山羊卵母细胞减数分裂,二者既可单独,又可降低浓度联合使用,但抑制山羊卵母细胞的浓度远高于牛和猪卵母细胞的;ROS和BL-Ⅰ抑制24h不影响山羊卵母细胞的成熟和激活能力,但影响卵母细胞的卵丘扩展和胚胎发育能力。因此,山羊卵母细胞减数分裂调控可能比它动物更精细。  相似文献   

11.
The timing of the reduction of cumulus cell-oocyte coupling was correlated with oocyte meiotic maturation and the expansion (mucification) of the cumulus oophorus using immature mice treated with gonadotropins. Three hours after the injection of an ovulatory dose of human chorionic gonadotropin (hCG), more than 90% of the oocytes isolated from large Graafian follicles had undergone germinal vesicle breakdown, indicating that oocyte meiotic maturation had been initiated. However, no cumulus expansion or reduction of intercellular coupling was detected at this time. By 6 hr after hCG injection, the index of oocyte-cumulus cell coupling was still not less than that found in oocyte-cumulus cell complexes isolated from control mice not receiving hCG. Cumulus expansion at 6 hr post-hCG was limited to the outer cumulus cells while those adjacent to the oocyte were still tightly packed. Cumulus expansion appeared complete by 9 hr after hCG injection and the cumulus cell-oocyte coupling index was greatly reduced. These results show that oocyte meiotic maturation in the mouse is not initiated by a reduction in cumulus cell-oocyte coupling or by cumulus expansion. However, the results suggest that the reduction of intercellular coupling in vivo may be a result of cumulus expansion.  相似文献   

12.
The aim of this study was to test the following hypotheses: (i) that oocyte maturation is controlled by surrounding follicular cells; (ii) that a meiosis-regulating factor of follicular origin is not species-specific; (iii) that one of the follicular regulators of oocyte maturation is IGF-I; and, (iv) that Cumulus oophorus and tyrosine kinase-dependent intracellular mechanisms do not mediate IGF-I action on oocytes. It was found that co-culture of cumulus-enclosed bovine oocytes with isolated bovine ovarian follicles or with isolated porcine ovarian follicles significantly increased the proportion of matured oocytes (at metaphase II of meiosis) after culture. Porcine oocytes without cumulus investments had lower maturation rates than cumulus-enclosed oocytes. Co-culture with isolated porcine ovarian follicles resulted in stimulation of maturation of both cumulus-free and cumulus-enclosed porcine oocytes. These observations suggest that follicular cells (whole follicles or Cumulus oophorus) support bovine and porcine oocyte maturation, and that follicular maturation-promoting factor is not species-specific. The release of significant amounts of IGF-I by cultured bovine and porcine isolated follicles and granulosa cells was demonstrated. Addition of IGF-I to culture medium at 10 or 100 (but not 1000) ng/ml stimulated meiotic maturation of both cumulus-enclosed and cumulus-free porcine oocytes. Neither of the tyrosine kinase blockers, genistein or lavendustin (100 ng/ml medium), changed the stimulating effect of IGF-I on porcine oocytes. The present data suggest that at least one of the follicular stimulators of oocyte nuclear maturation is IGF-I, and that its effect is probably not mediated by cumulus investment or by tyrosine kinase-dependent intracellular mechanisms.  相似文献   

13.
As an important biological messenger, nitric oxide (NO) exhibits a wide range of effects during physiological and pathophysiological processes, including mammalian oocyte meiotic maturation. The present study investigated whether NO derived from two nitric oxide synthase (NOS) isoforms, inducible NOS (iNOS) or endothelial NOS (eNOS), is involved in the meiotic maturation of porcine oocytes. Meanwhile, the cumulus cells' function in meiotic maturation and their interaction with oocyte development and degeneration were also investigated using cumulus-enclosed oocytes (CEOs) and denuded oocytes (DOs). Different inhibitors for NOS were supplemented to the medium. Cumulus expansion, cumulus cell DNA fragmentation and oocyte meiotic resumption were evaluated 48 h after incubation. Aminoguanidine (AG), a selective inhibitor for iNOS, suppressed cumulus expansion and inhibited CEOs to resume meiosis (p < 0.05), but did not inhibit cumulus cell DNA fragmentation. Both Nomega-nitro-L-arginine (L-NNA) and Nomega-nitro-L-arginine methyl ester (L-NAME), inhibitors for both iNOS and eNOS, delayed cumulus expansion, inhibited cumulus cell DNA fragmentation and inhibited CEOs to resume meiosis. Such effects were not seen in DOs. These results indicate that iNOS-derived NO is necessary for cumulus expansion and meiotic maturation by mediating the function of the surrounding cumulus cells, and eNOS-derived NO is also involved in porcine meiotic maturation.  相似文献   

14.
Cumulus cells are metabolically coupled to the mammalian oocyte via heterologous gap junctions. One function attributed to the gap junctional communications is the transfer of regulatory signals that direct the meiotic state of the oocyte. However, the precise role of these junctions in meiotic maturation is still unclear. The aim of this study was to test the hypothesis that meiotic resumption is induced by the transfer of a stimulatory signal(s) from the cumulus cells to the oocyte through the gap junctional coupling pathway. We have previously shown that the mitogenic lectin concanavalin A (Con A) induces oocyte maturation in isolated cumulus cell-enclosed oocytes (CEO) when meiotic arrest is maintained with a number of different inhibitory agents [Biol Reprod 1990; 42:413-423]. In the present study, Con A stimulated maturation in dibutyryl cAMP (dbcAMP)-arrested CEO but not in denuded oocytes cocultured with cumulus cells. Heptanol, a known gap junction uncoupler, effectively prevented Con A- and FSH-induced maturation of intact CEO and dramatically reduced metabolic coupling between cumulus cells and the oocyte. However, this alcohol had no effect on denuded oocytes (DO) or on dbcAMP-arrested CEO in the absence of stimulating ligand. Con A and FSH produced only a minimal loss of coupling. When the effects of heptanol were compared with those of the n-alkanols hexanol and decanol, the efficacies of these agents as suppressors of Con A-stimulated oocyte maturation was directly related to their relative abilities to suppress metabolic coupling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Protein kinase C and meiotic regulation in isolated mouse oocytes   总被引:10,自引:0,他引:10  
In this study, the possible role of protein kinase C (PKC) in mediating both positive and negative actions on meiotic maturation in isolated mouse oocytes has been examined. When cumulus cell-enclosed oocytes (CEO) were cultured for 17-18 hr in a medium containing 4 mM hypoxanthine (HX) to maintain meiotic arrest, each of the five different activators and five different antagonists of PKC stimulated germinal vesicle breakdown (GVB) in a dose-dependent fashion. One of the activators, phorbol-12-myristate 13-acetate (PMA), also triggered GVB in CEO arrested with isobutylmethylxanthine or guanosine, but not in those arrested with dibutyryl cyclic AMP. When denuded oocytes (DO) were cultured for 3hr in inhibitor-free medium, all PKC activators suppressed maturation (<10% GVB compared to 94% in controls), while the effect of PKC antagonists was negligible. Four of the five antagonists reversed the meiosis-arresting action of HX in DO. PMA transiently arrested the spontaneous maturation of both CEO and DO, with greater potency in DO. The stimulatory action of PMA in HX-arrested oocytes was dependent on cumulus cells, because meiotic induction occurred in CEO but not DO. PKC activators also preferentially stimulated cumulus expansion when compared to antagonists. A cell-cell coupling assay determined that the action of PMA on oocyte maturation was not due to a loss of metabolic coupling between the oocyte and cumulus oophorus. Finally, Western analysis demonstrated the presence of PKCs alpha, beta1, delta, and eta in both cumulus cells and oocytes, but only PKC epsilon was detected in the cumulus cells. It is concluded that direct activation of PKC in the oocyte suppresses maturation, while stimulation within cumulus cells generates a positive trigger that leads to meiotic resumption.  相似文献   

16.
To analyze the potential mechanisms by which hypoxanthine and adenosine maintain meiotic arrest in mouse oocytes this study focused on: the uptake and metabolism of hypoxanthine and adenosine; the effect of inhibitors of inosine monophosphate (IMP) dehydrogenase on purine-mediated meiotic arrest; and the role of adenosine metabolism on the maintenance of meiotic arrest. Although the denuded oocyte can take up radiolabeled hypoxanthine and adenosine, an intact cumulus oophorus greatly augments uptake of these molecules (and/or metabolites). Both of these compounds were completely metabolized during incubation in vitro: hypoxanthine was apparently metabolized to uric acid and adenosine was metabolized to ADP; a small amount of each compound was also converted to inosine by cumulus cells and transferred to the oocyte. The IMP dehydrogenase inhibitors, bredinin and mycophenolic acid (MA), induced, in a dose-dependent manner, the resumption of maturation in cumulus cell-enclosed oocytes maintained in meiotic arrest by hypoxanthine but had no effect on denuded oocytes. MA did not induce maturation when meiotic arrest was maintained by guanosine. Nor did MA alter the uptake of hypoxanthine by cumulus cell-enclosed oocytes. The poorly metabolized analog of adenosine, 2-chloroadenosine, was as effective as adenosine in its synergistic action with hypoxanthine in maintaining meiotic arrest. It is concluded that hypoxanthine and adenosine are metabolized within the oocyte-cumulus cell complex; xanthyl and/or guanyl compounds are produced by oocyte-cumulus cell complexes in the presence of hypoxanthine and play an important role in the maintenance of meiotic arrest; and adenosine need not be metabolized to act synergistically with hypoxanthine in maintaining meiotic arrest.  相似文献   

17.
The hypothesis proposed in the late 1970s that meiotic resumption in mammalian oocytes might result from the disruption of gap junction communication between follicle cells and the oocyte has not been supported by metabolic cooperation experiments which demonstrate that exogenous tracer transfer from the cumulus oophorus to the oocyte does not decrease until several hours after germinal vesicle breakdown (GVBD). Since these studies utilized isolated cumulus-oocyte complexes for their measurements, however, they excluded from consideration the possible effect of separation of the cumulus oophorus from the membrana granulosa which was required for this assay. We considered the possibility that the disruption of cumulus junctions within the intact follicle could mimic this experimental manipulation and previously reported that cumulus gap junctions were dramatically down-regulated during the period of GVBD in vivo. In the present study, we have utilized quantitative morphometric techniques to analyze the responses of other gap junction populations in intact preovulatory rat follicles to an ovulatory stimulus and demonstrate now that membrana granulosa, cumulus, and cumulus-oocyte gap junctions are down-regulated at different times and rates during the preovulatory period. Although membrana gap junctions are down-regulated during the period of meiotic resumption, their loss is not as rapid or as complete as in the cumulus oophorus. Cumulus-oocyte gap junctions are down-regulated after meiosis resumes but during the same period other investigators have demonstrated a reduction in metabolite transfer between the cumulus oophorus and the oocyte. Our results are interpreted to suggest that the cumulus oophorus may regulate the conduction of meiosis inhibitory signals between the membrana granulosa and the oocyte.  相似文献   

18.
Cumulus oophorus, an investing structure unique to oocytes of higher mammals, is induced to synthesize an extensive extracellular matrix by ovulatory stimulus, leading to the characteristic preovulatory expansion of the cumulus-oocyte complex. The extracellular matrix consists of cumulus cell-secreted hyaluronan, proteoglycans and proteins, as well as extrafollicularly originated SHAPs (serum-derived hyaluronan-associated proteins) that are bound covalently to hyaluronan. The secretion and assembly of matrix molecules by cumulus cells are temporally regulated by factors derived from both mural granulosa cells and oocyte, which synchronize the deposition of the cumulus oophorus matrix with other intrafollicular ovulatory events. The cumulus oophorus matrix is essential for ovulation and subsequent fertilization. Recently, taking advantage of animal models with defined genetic modifications, it has become possible to investigate in vivo the structure of the cumulus oophorus matrix, the regulatory mechanism for matrix deposition and its biological functions. This review focuses on the recent findings on the construction of the cumulus oophorus matrix and the regulation.  相似文献   

19.
We have used carbohydrate-binding proteins, or lectins, as tools to investigate the physiological phenomena associated with the preovulatory maturation of the oocyte-cumulus cell complex. Certain lectins are mitogens, and since other mitogenic agents such as growth factors are known to stimulate meiotic maturation and cumulus expansion, we tested the ability of lectins to provoke these physiological responses. Cumulus cell-enclosed oocytes (CEO) from primed mice were maintained in meiotic arrest in vitro with dibutyryl cyclic adenosine 3',5'-monophosphate (dbcAMP) and treated with one of eleven different lectins. With the exception of pokeweed mitogen (PWM), all of the mitogenic lectins tested were able to induce germinal vesicle breakdown (GVB) in meiotically arrested oocytes, and this action required the presence of the somatic cumulus cells; in fact, either there was no effect or maturation was suppressed when cumulus cell-free oocytes (denuded oocytes; DO) were treated with lectins. None of the nonmitogenic lectins stimulated meiotic maturation in either CEO or DO. The mitogenic lectin concanavalin A (Con A) also induced maturation in CEO when meiotic arrest was maintained with hypoxanthine, guanosine, or 3-isobutyl-1-methylxanthine. The kinetics of spontaneous oocyte maturation in inhibitor-free medium were not altered by Con A. Only the mitogenic lectins that induced meiotic maturation stimulated cumulus expansion, with Con A the most active lectin. The actions of Con A on the maturation of the oocyte-cumulus cell complex were inhibited by methyl-alpha-D-mannopyranoside as predicted by its sugar-binding specificity. These results demonstrate that (1) lectins can stimulate maturation of the mouse oocyte-cumulus cell complex; (2) mitogenicity is associated with the positive activity of the lectins; and (3) cumulus cells mediate the stimulatory action of lectins on oocyte maturation, while inhibition of GVB occurs at the oocyte level. These data support the idea that common signals mediate the mitogenic and maturation-inducing actions of lectins.  相似文献   

20.
S.E. Wert  W.J. Larsen   《Tissue & cell》1990,22(6):827-851
Cumulus cells in the mammalian ovary are normally connected to each other and to their enclosed oocyte by an extensive network of gap junctions (GJs). We have shown that the loss of cumulus cell GJs is correlated temporally with meiotic resumption in the intact preovulatory rat follicle (Larsen et al., 1986). Here we describe morphological changes in GJ particle packing patterns (PPPs) that occur prior to GJ loss and meiotic resumption in hormonally stimulated rat cumulus-oocyte complexes (COCs). In the PMSG-primed rat, 89% of the cumulus cell GJ area detected by freeze-fracture electron microscopy consists of tightly packed junctional particles: 4% exhibit loose PPPs of randomly dispersed particles; and 7% contain a mixture of both tight and loose PPPs. One to 2 hr after stimulation with hCG, the area of GJs containing tight PPPs drops by 50%-60%, while junctions exhibiting loosely organized and mixed patterns increase concomitantly. These shifts in PPPs are accompanied by the appearance of unusual particle-free areas of puckered or ruffled nonjunctional membrane at the GJ periphery. Cumulus cell GJs from isolated COCs incubated in FSH-containing medium demonstrate a similar shift in PPPs prior to meiotic resumption. The appearance of fusing areas of particle-free nonjunctional membrane at the GJ periphery in vitro is correlated with GJ loss and is not seen in COCs treated with dihydrocytochalasin B to inhibit endocytotic removal of cumulus GJs. The structural and temporal nature of these morphological observations supports the hypothesis that interruption of junctional communication plays a role in meiotic maturation of the preovulatory oocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号