首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial community in partially purified water, which is prepared by ion exchange from tap water and is used in pharmaceutical manufacturing processes, was analyzed by denaturing gradient gel electrophoresis (DGGE). 16S ribosomal DNA fragments, including V6, -7, and -8 regions, were amplified with universal primers and analyzed by DGGE. The bacterial diversity in purified water determined by PCR-DGGE banding patterns was significantly lower than that of other aquatic environments. The bacterial populations with esterase activity sorted by flow cytometry and isolated on soybean casein digest (SCD) and R2A media were also analyzed by DGGE. The dominant bacterium in purified water possessed esterase activity but could not be detected on SCD or R2A media. DNA sequence analysis of the main bands on the DGGE gel revealed that culturable bacteria on these media were Bradyrhizobium sp., Xanthomonas sp., and Stenotrophomonas sp., while the dominant bacterium was not closely related to previously characterized bacteria. These data suggest the importance of culture-independent methods of quality control for pharmaceutical water.  相似文献   

2.
利用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术和磷脂脂肪酸(PLFA)分析方法,比较了北京通州、顺义、昌平、延庆地区甘薯叶际细菌的多样性和生物量,并调查了通州地区甘薯叶际细菌群落在不同生长季节的变化情况。PLFA分析结果发现所有检测样品中,革兰氏阳性细菌生物量均高于革兰氏阴性细菌生物量。PCR-DGGE方法与PLFA方法聚类分析结果较一致,甘薯叶际细菌群落结构受到时空因素、甘薯生理特性等的影响,不同地点、不同生长季节甘薯叶际细菌群落结构有较大差异,DGGE条带测序分析表明,Pseudomonas sp.在不同地点的甘薯叶际均为保守菌群,Bacillus sp.,Acinetobacter sp.,  相似文献   

3.
利用铜绿微囊藻(Microcystis aeruginosa)作为溶藻对象富集、筛选, 获得一个稳定的溶藻菌群。采用叶绿素、PCR和变性梯度凝胶电泳(DGGE)方法研究溶藻过程及其细菌种群结构的变化。结果显示, 富集的溶藻菌经1×10-5稀释后仍有显著溶藻效果。Rubritepida菌C1、假单胞菌C2和鞘氨醇单胞菌C3是存在于铜绿微囊藻中的3种伴生细菌。加入富集的溶藻菌群后, 菌群结构发生明显的变化, Rubritepida菌C1、假单胞菌C2消失, 混合菌群包含未培养黄杆菌A2、鞘氨醇单胞菌C3和噬氢  相似文献   

4.
The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands.  相似文献   

5.
Bacterial communities associated with the surfaces of several Mediterranean sponge species (Agelas oroides, Chondrosia reniformis, Petrosia ficiformis, Geodia sp., Tethya sp., Axinella polypoides, Dysidea avara, and Oscarella lobularis) were compared to those associated with the mesohyl of sponges and other animate or inanimate reference surfaces as well as with those from bulk seawater. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified bacterial 16S ribosomal RNA genes obtained from the surfaces and tissues of these sponges demonstrated that the bacterial communities were generally different from each other. The bacterial communities from sponges were different from those on reference surfaces or from bulk seawater. Additionally, clear distinctions in 16S rDNA fingerprint patterns between the bacterial communities from mesohyl samples of "high-microbial abundance (HMA) sponges" and "low-microbial abundance sponges" were revealed by DGGE and cluster analysis. A dominant occurrence of particularly GC-rich 16S ribosomal DNA (rDNA) fragments was found only in the DGGE banding pattern obtained from the mesohyl of HMA sponges. Furthermore, sequencing analysis of 16S rDNA fragments obtained from mesohyl samples of HMA sponges revealed a dominant occurrence of sponge-associated bacteria. The bacterial communities within the mesohyl of HMA sponges showed a close relationship to each other and seem to be sponge-specific.  相似文献   

6.
利用DGGE评价不同培养基回收番茄根际细菌类群的能力   总被引:13,自引:0,他引:13  
用营养肉汤、YG、根系分泌物、土壤浸渍液4种培养基从番茄根际分离培养细菌,并结合变性梯度凝胶电泳(DGGE)技术,对4种培养基回收番茄根际细菌种群的能力进行了比较研究。结果表明,不同培养基和培养温度,回收到的细菌种群有一定差异;低营养浓度的YG培养基在较低的培养温度20℃下进行较长时间的培养,比高营养浓度营养肉汤培养基产生更多、更具代表性的细菌;以根系分泌物为基础的培养基从番茄根际回收到的优势菌群最多。该研究初步建立了用DGGE技术对不同培养基回收分离细菌种群能力进行评价的方法。  相似文献   

7.
The bacterial and fungal rhizosphere communities of strawberry (Fragaria ananassa Duch.) and oilseed rape (Brassica napus L.) were analysed using molecular fingerprints. We aimed to determine to what extent the structure of different microbial groups in the rhizosphere is influenced by plant species and sampling site. Total community DNA was extracted from bulk and rhizosphere soil taken from three sites in Germany in two consecutive years. Bacterial, fungal and group-specific (Alphaproteobacteria, Betaproteobacteria and Actinobacteria) primers were used to PCR-amplify 16S rRNA and 18S rRNA gene fragments from community DNA prior to denaturing gradient gel electrophoresis (DGGE) analysis. Bacterial fingerprints of soil DNA revealed a high number of equally abundant faint bands, while rhizosphere fingerprints displayed a higher proportion of dominant bands and reduced richness, suggesting selection of bacterial populations in this environment. Plant specificity was detected in the rhizosphere by bacterial and group-specific DGGE profiles. Different bulk soil community fingerprints were revealed for each sampling site. The plant species was a determinant factor in shaping similar actinobacterial communities in the strawberry rhizosphere from different sites in both years. Higher heterogeneity of DGGE profiles within soil and rhizosphere replicates was observed for the fungi. Plant-specific composition of fungal communities in the rhizosphere could also be detected, but not in all cases. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Rostock site revealed that Streptomyces sp. and Rhizobium sp. were among the dominant ribotypes in the strawberry rhizosphere, while sequences from Arthrobacter sp. corresponded to dominant bands from oilseed rape bacterial fingerprints.  相似文献   

8.
The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands.  相似文献   

9.
以定向分离培养和基于16S rDNA的PCR-DGGE (Denaturing gradient gel electrophoresis, DGGE)方法, 分析感黄龙病柑橘与健康柑橘植株不同部位的内生细菌多样性, 分离柑橘组织共获得19株可培养的兼性厌氧型内生细菌, 经形态、生理生化结合16S rDNA分子方法鉴定其隶属于12个属, 其中短小杆菌属Curtobacterium sp. (IF: 29.07%)、芽孢杆菌属Bacillus sp. (IF: 23.12%)和微杆菌属Microbacterium sp. (IF: 21.09%)为罹病植株的优势菌群, 芽孢杆菌属Bacillus sp. (IF: 21.03%)、动性球菌属Planococcus sp. (IF: 20.69%)和假单胞菌属Pseudomonas sp. (IF: 17.44%)为无症健株的优势菌群。对DGGE方法得到的50条16S rDNA目标条带进行序列比对, 共鉴定出9个属的细菌, 结果表明沙雷氏菌属Serrations sp. (IF: 28%)是优势菌属, 泛菌属Pantoea sp. (IF: 14%)是次优势菌属; 病果桔络中黄龙病菌含量最高(>1%), 而罹病植株其他部位的黄龙病菌丰度较低。PCR-DGGE 图谱也显示感病和健康柑橘组织的内生细菌存在差异。  相似文献   

10.
Leng J  Xie L  Zhu R  Yang S  Gou X  Li S  Mao H 《Molecular biology reports》2011,38(8):4863-4872
The dominant rumen bacteria in Gayals, Yaks and Yunnan Yellow Cattle were investigated using PCR-DGGE approach. The analysis of DGGE profiles, identification of dominant bands and phylogenetic analysis 16S rDNA sequences in DGGE profiles were combined to reveal the dominant bacterial communities and compared the differences between those cattle species. DGGE profiles revealed that Gayals had the most abundant dominant bacteria and the lowest similarity of intraspecies between individuals than other two cattle species. A total of 45 sequences were examined and sequence similarity analysis revealed that Gayals had the most sequences appeared to uncultured bacteria, accounting for 85.0% of the total sequences, Yaks and Yunnan Yellow Cattle had 44.4 and 68.8% uncultured bacterial sequences, respectively. According to phylogenetic analysis, the rumen dominant bacteria of Gayals were mainly phylogenetically placed within phyla firmicutes and bacteroidetes, and the known bacteria were mainly belonged to the genera Lachnospiraceae bacterium, Ruminococcus flavefaciens and Clostridium celerecrescens. Moreover, the dominant bacteria of Yaks were also mainly belonged to phyla firmicutes and bacteroidetes, and the known dominant bacteria were including Ruminococcus flavefaciens, Butyrivibrio fibrisolvens, Pseudobutyrivibrio ruminis, Schwartzia succinivorans and Clostridiales bacterium, most of them are common rumen bacteria. In addition, the dominant bacteria in Yunnan Yellow Cattle were belonged to phyla firmicutes, bacteroidetes and Actinobacteria, and the known dominant bacteria containing Prevotella sp., Staphylococci lentus, Staphylococcus xylosus and Corynebacterium casei. Present study first detected Staphylococcus lentus and Staphylococcus xylosus in the rumen of cattle.  相似文献   

11.
AIMS: To investigate whether two different wastewater treatment plants (WWTPs) -- treating the same pharmaceutical influent -- select for a different bacterial and/or ammonia oxidizing bacterial (AOB) community. METHODS AND RESULTS: Molecular fingerprinting demonstrated that each WWTP had its own total bacterial and AOB community structure, but Nitrosomonas eutropha and N. europea were dominant in both WWTP A and B. The DNA and RNA analysis of the AOB communities revealed different patterns; so the most abundant species may not necessarily be the most active ones. Nitritation failures, monitored by chemical parameter analysis, were reflected as AOB community shifts and visualized by denaturing gradient gel electrophoresis (DGGE)-based moving window analysis. CONCLUSIONS: This research demonstrated the link between functional performance (nitritation parameters) and the presence and activity of a specific microbial ecology (AOB). Clustering and moving window analysis based on DGGE showed to be valuable to monitor community shifts in both WWTPs. SIGNIFICANCE AND IMPACT OF THE STUDY: This study of specific community shifts together with functional parameter analysis has potential as a tool for relating functional instability (such as operational failures) to specific-bacterial community shifts.  相似文献   

12.
A glass bead biofilm reactor was operated using H2 as an electron donor to remove nitrate at 150 mg NO3–N l−1 to below detection level. The microbial community in the glass beads biofilm reactor was investigated by using denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. In DGGE analysis of the biofilm, five bands were dominant and indicated the presence of eight β-proteobacteria, one γ-proteobacteria and twelve clostridia. An unculturable Hydrogenophaga sp., which is a new genus of hydrogen-oxidizing bacterium was dominant in microbial community of the biofilm reactor.  相似文献   

13.
The bacterial communities in the intestinal tracts of earthworm were investigated by culture-dependent and - independent approaches. In total, 72 and 55 pure cultures were isolated from the intestinal tracts of earthworms under aerobic and anaerobic conditions, respectively. Aerobic bacteria were classified as Aeromonas (40%), Bacillus (37%), Photobacterium (10%), Pseudomonas (7%), and Shewanella (6%). Anaerobic bacteria were classified as Aeromonas (52%), Bacillus (27%), Shewanella (12%), Paenibacillus (5%), Clostridium (2%), and Cellulosimicrobium (2%). The dominant microorganisms were Aeromonas and Bacillus species under both aerobic and anaerobic conditions. In all, 39 DNA fragments were identified by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. Aeromonas sp. was the dominant microorganism in feeds, intestinal tracts, and casts of earthworms. The DGGE band intensity of Aeromonas from feeds, intestinal tracts, and casts of earthworms was 12.8%, 14.7%, and 15.1%, respectively. The other strains identified were Bacillus, Clostridium, Enterobacter, Photobacterium, Pseudomonas, Shewanella, Streptomyces, uncultured Chloroflexi bacterium, and uncultured bacterium. These results suggest that PCR-DGGE analysis was more efficient than the culture-dependent approach for the investigation of bacterial diversity and the identification of unculturable microorganisms.  相似文献   

14.
The bacterial community present during semicontinuous treatment of organic solid waste under alkaline and high-temperature conditions was studied. PCR-amplified 16S rDNA fragments were analyzed by double gradient-denaturing gradient gel electrophoresis (DGGE). The band pattern was stable during the steady state of the treatment phase, and the major bands resulting from individual treatments had the same DNA sequence with good reproducibility. No sequence in the DNA database of isolated bacteria showed close similarity to this sequence, the closest relative being Bacillus licheniformis with less than 97% similarity. The conditions for fluorescence in situ hybridization (FISH) were determined without the need to obtain extracts of the bacterial cells. An oligonucleotide probe was designed to detect the microorganisms found in the DGGE analysis. FISH analysis showed that the bacterium corresponding to the major bands accounted for 30% of the total eubacterial cell count at the steady state. These results indicate that this bacterium is a key microorganism in the biodegradation process.  相似文献   

15.
PCR-DGGE技术在农田土壤微生物多样性研究中的应用   总被引:49,自引:6,他引:43  
罗海峰  齐鸿雁  薛凯  张洪勋 《生态学报》2003,23(8):1570-1575
变性梯度凝胶电泳技术(DGGE)在微生物生态学领域有着广泛的应用。研究采用化学裂解法直接提取出不同农田土壤微生物基因组DNA,并以此基因组DNA为模板,选择特异性引物F357GC和R515对16S rRNA基因的V3区进行扩增,长约230bp的PCR产物经变性梯度凝胶电泳(DGGE)进行分离后,得到不同数目且分离效果较好的电泳条带。结果说明,DGGE能够对土壤样品中的不同微生物的16S rRNA基因的V3区的DNA扩增片断进行分离,为这些DNA片断的定性和鉴定提供了条件。与传统的平板培养方法相比,变性梯度凝胶电泳(DGGE)技术能够更精确的反映出土壤微生物多样性,它是一种有效的微生物多样性研究技术。  相似文献   

16.
The naphthalene-degrading activity of a Pseudomonas sp. strain isolated from a creosote-contaminated soil was shown to be encoded by the IncP9 plasmid pNF142 by transfer to Pseudomonas putida KT2442. The effects of the inoculant strain KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community were studied in microcosms with the following treatments: (I) soil, (II) soil with naphthalene, (III) soil with naphthalene and inoculated with KT2442 (pNF142). The inoculant became the dominant bacterial population in treatment (III) as evidenced by cultivation and denaturing gradient gel electrophoresis (DGGE) analysis. The bacterial DGGE profiles revealed drastically reduced complexity due to the numerical dominance of the inoculant. However, group-specific fingerprints (beta-proteobacteria, actinobacteria) that excluded KT2442 (pNF142) showed less severe changes in the bacterial community patterns. A major effect of naphthalene on the soil bacterial community was observed in treatment (II) after 21 days. Two dominant bands appeared whose sequences showed the highest similarity to those of Burkholderia sp. RP007 and Nocardia vinaceae based on 16S rRNA gene sequencing. These bands were less intense in treatment (III). The increased abundance of RP007-like populations due to naphthalene contamination was also confirmed by PCR amplification of the phnAc gene. The nahAc and nahH genes were detected in DNA and cDNA only in treatment III. Although the inoculant strain KT2442 (pNF142) showed good survival and expression of genes involved in naphthalene degradation, this study suggests that KT2442 (pNF142) suppressed the enrichment of indigenous naphthalene degraders.  相似文献   

17.
Two different strategies for molecular analysis of bacterial diversity, 16S rDNA cloning and denaturing gradient gel electrophoresis (DGGE), were combined into a single protocol that took advantage of the best attributes of each: the ability of cloning to package DNA sequence information and the ability of DGGE to display a community profile. In this combined protocol, polymerase chain reaction products from environmental DNA were cloned, and then DGGE was used to screen the clone libraries. Both individual clones and pools of randomly selected clones were analyzed by DGGE, and these migration patterns were compared to the conventional DGGE profile produced directly from environmental DNA. For two simple bacterial communities (biofilm from a humics-fed laboratory reactor and planktonic bacteria filtered from an urban freshwater pond), pools of 35–50 clones produced DGGE profiles that contained most of the bands visible in the conventional DGGE profiles, indicating that the clone pools were adequate for identifying the dominant genotypes. However, DGGE profiles of two different pools of 50 clones from a lawn soil clone library were distinctly different from each other and from the conventional DGGE profile, indicating that this small number of clones poorly represented the bacterial diversity in soil. Individual clones with the same apparent DGGE mobility as prominent bands in the humics reactor community profiles were sequenced from the clone plasmid DNA rather than from bands excised from the gel. Because a longer fragment was cloned (∼1500 bp) than was actually analyzed in DGGE (∼350 bp), far more sequence information was available using this approach that could have been recovered from an excised gel band. This clone/DGGE protocol permitted rapid analysis of the microbial diversity in the two moderately complex systems, but was limited in its ability to represent the diversity in the soil microbial community. Nonetheless, clone/DGGE is a promising strategy for fractionating diverse microbial communities into manageable subsets consisting of small pools of clones.  相似文献   

18.
以开菲尔(Kefir)粒为材料,经过DNA抽提和16SrDNA V3区PCR扩增,扩增产物经变性梯度凝胶电泳(DGGE)分离并切割电泳条带进行序列测定,并与现有的数据库进行了比较,对Kefir粒的细菌多样性进行分析。结果表明,DGGE图谱中可检测到的8条带的16SrDNA基因序列中有7个基因序列与GenBank数据库登录的相关序列的相似性大于98%,余下的1个基因序列的相似性也大于96%。相似性大于98%的7个克隆中,有3个属于鞘氨醇杆菌属(Sphingobacterium),2个属于乳杆菌属(Lactobacillus),其它2个分别属于肠杆菌属(Errterobacter)和不动杆菌属(Acinetobacter)。首次报道了鞘氨醇杆菌作为优势菌群存在开菲尔Kefir粒中。  相似文献   

19.
Constructed wetlands are used to treat acid drainage from surface or underground coal mines. However, little is known about the microbial communities in the receiving wetland cells. The purpose of this work was to characterize the microbial population present in a wetland that was receiving acid coal mine drainage (AMD). Samples were collected from the oxic sediment zone of a constructed wetland cell in southeastern Ohio that was treating acid drainage from an underground coal mine seep. Samples comprised Fe(III) precipitates and were pretreated with ammonium oxalate to remove interfering iron, and the DNA was extracted and purified by agarose gel electrophoresis prior to amplification of portions of the 16S rRNA gene. Amplified products were separated by denaturing gradient gel electrophoresis and DNA from seven distinct bands was excised from the gel and sequenced. The sequences were matched to sequences in the GenBank bacterial 16S rDNA database. The DNA in two of the bands yielded matches with Acidithiobacillus ferrooxidans and the DNA in each of the remaining five bands was consistent with one of the following microorganisms: Acidithiobacillus thiooxidans, strain TRA3-20 (a eubacterium), strain BEN-4 (an arsenite-oxidizing bacterium), an Alcaligenes sp., and a Bordetella sp. Low bacterial diversity in these samples reflects the highly inorganic nature of the oxic sediment layer where high abundance of iron- and sulfur-oxidizing bacteria would be expected. The results we obtained by molecular methods supported our findings, obtained using culture methods, that the dominant microbial species in an acid receiving, oxic wetland are A. thiooxidans and A. ferrooxidans.  相似文献   

20.
Bacterial Community Succession in Natural River Biofilm Assemblages   总被引:1,自引:0,他引:1  
Temporal bacterial community changes in river biofilms were studied using 16S rRNA gene-based polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) followed by sequence analysis. Naturally occurring biofilms were sampled in 2001 during an undisturbed 7-month low-water period in the River Garonne (SW France). During the sampling period epilithic biomass exhibited a particular pattern: two 3-month periods of accumulation that resulted in two peaks in summer and fall, each at about 25 g ash-free dry mass per square meter. Bacterial community DGGE profiles differed between the summer and fall biomass peaks and shared only 30% common operational taxonomic units (OTUs), suggesting the influence of seasonal factors on these communities. During the second biomass accrual phase, bacterial richness and the appearance of new OTUs fitted a conceptual model of bacterial biofilm succession. During succession, five OTUs (corresponding to Dechloromonas sp., Nitrospira sp., and three different Spirosoma spp.) exhibited particular patterns and were present only during clearly defined successional stages, suggesting differences in life-history strategies for epilithic bacteria. Co-inertia analysis of DGGE banding patterns and physical–chemical data showed a significant relationship between community structure and environmental conditions suggesting that bacterial communities were mainly influenced by seasonal changes (temperature, light) and hydrodynamic stability. Within the periods of stability, analysis of environmental variables and community patterns showed the dominant influence of time and maturation on bacterial community structure. Thus, succession in these naturally occurring epilithic biofilm assemblages appears to occur through a combination of allogenic (seasonal) and autogenic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号