首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
[目的]为了确定铜绿假单胞菌调控因子Pip对两个不同吩嗪合成基因簇(phz1和phz2)的具体调控方式与可能的调控机制.[方法]根据基因比对结果,采用同源重组技术构建Pip调控因子缺失突变株PA-PG以及克隆ip基因作互补分析;再以已构建的吩嗪基因簇缺失突变株PA-Z1G和PA-Z2K为受体菌,构建突变株PA-PD-Z1G和PA-PG-Z2K,测定并比较野生株及相关突变株的吩嗪-1-羧酸和绿脓菌素的合成量,推定Pip对两个不同吩嗪合成基因簇的调控方式.[结果]在GA培养基中,突变株PA-PG的吩嗪-1-羧酸和绿脓菌素都比野生型明显减少;互补分析显示,突变株PA-PG的吩嗪-1-羧酸和绿脓菌素都显著提高并恢复到野生株PAO1水平;突变株PA-Z1G的吩嗪-1-羧酸和绿脓菌素合成量因Pip缺失而显著减少;而突变株PA-Z2K的吩嗪-1-羧酸和绿脓菌素合成量在Pip缺失后仍保持不变.[结论]初步推定,转录调控因子Pip对铜绿假单胞菌吩嗪合成代谢的确具有促进作用;Pip通过正向调控吩嗪基因簇phz2的合成功能实现对吩嗪合成代谢的调控.  相似文献   

2.
设计引物从假单胞菌M18基因组DNA中扩增并获得rpoS基因的378bp保守区段。以此为探针,从假单胞菌基因组文库中克隆了包括rpoS基因全序列及其相邻序列的3·1kbEcoRⅠ-XhoⅠ片段。通过抗性基因(抗庆大霉素基因)的定点插入构建了σ38亚基缺失突变株M18S。HPLC检测结果显示,σ38亚基缺失引起该菌株的抗生物质合成代谢的显著变化。与野生株相比,缺失突变株的吩嗪-1-羧酸在PPM和KMB中2种培养基中合成量由58μg/mL和10·2μg/mL分别减少到20·4μg/mL和0μg/mL;而缺失突变株的藤黄绿脓菌素则相反,在PPM和KMB两种培养基中合成量由0·5μg/mL和20·5μg/mL分别提高到75·4μg/mL和185·6μg/mL。表明σ38亚基可区别性调控假单胞菌M18的抗生物质合成代谢。rpoS基因的互补实验和两种抗生素基因与β-半乳糖苷酶基因的翻译融合表达实验进一步验证了上述的结果:σ38亚基正调控吩嗪-1-羧酸的表达,而负调控藤黄绿脓菌素的表达。  相似文献   

3.
假单胞菌M18是一株能同时合成藤黄绿脓菌素(Plt)和吩嗪-1-羧酸(PCA)两种抗生物质的植物根际促生细菌。运用PCR方法, 从M18基因组中扩增得到pqsR基因, 该基因编码LysR家族调控蛋白PqsR。通过同源重组技术, 构建假单胞菌M18的pqsR突变菌株M18PRG。比较野生型菌株M18和突变菌株M18PRG在KMB培养基的Plt产量, 发现M18PRG 菌株合成Plt的量约为野生型M18菌株的3~4倍。在pqsR突变株的反式互补实验中, Plt的产量回复到野生型水平。pltA′-′lacZ翻译融合的测定结果进一步证明PqsR对Plt生物合成基因簇具有负调控作用。分析M18野生型及其pqsR突变株的生长曲线, 发现PqsR对细菌的生长具有抑制作用。另外, 我们还发现pqsR基因调控红色色素的产生。上述结果表明, 在假单胞菌M18中, PqsR作为全局性调控因子参与了细胞内多种生理活动的调控。  相似文献   

4.
设计引物从假单胞菌M18基因组DNA中扩增并获得rpoS基因的378bp保守区段。以此为探针,从假单胞菌基因组文库中克隆了包括rpoS基因全序列及其相邻序列的3.1kb EcoRⅠ_XhoⅠ片段。通过抗性基因(抗庆大霉素基因)的定点插入构建了σ38亚基缺失突变株M18S。HPLC检测结果显示,σ38亚基缺失引起该菌株的抗生物质合成代谢的显著变化。与野生株相比,缺失突变株的吩嗪_1_羧酸在PPM和KMB中2种培养基中合成量由58μg/mL和10.2μg/mL分别减少到20.4μg/mL和0μg/mL;而缺失突变株的藤黄绿脓菌素则相反,在PPM和KMB两种培养基中合成量由0.5μg/mL和20.5μg/mL分别提高到75.4μg/mL和185.6μg/mL。表明σ38亚基可区别性调控假单胞菌M18的抗生物质合成代谢。rpoS基因的互补实验和两种抗生素基因与β_半乳糖苷酶基因的翻译融合表达实验进一步验证了上述的结果: σ38亚基正调控吩嗪_1_羧酸的表达,而负调控藤黄绿脓菌素的表达。  相似文献   

5.
假单胞菌株M18分泌藤黄绿脓菌素 (Pyoluteorin ,Plt )和吩嗪 1 羧酸 (Phenazine 1 carboxylicacid ,PCA)并抑制多种植物病菌的生长。从M18中克隆双基因调控系统gacS gacA的组成基因gacA ,并构建了该基因抗性插入突变株M18G。在KMB培养基中 ,M18G合成Plt的能力受到完全抑制 ,而PCA的积累约比野生型提高 31倍左右。Plt合成基因簇突变株M18T和在M18G基础上构建的PCA合成基因簇突变株M18GA的Plt和PCA合成的动力学变化表明 ,在M18G菌株中 ,Plt合成的抑制并不引起PCA的过量积累 ,PCA的过量积累也不引起Plt合成的抑制。由此推测 ,gacA在基因表达的水平上全局性地执行着调控功能  相似文献   

6.
【目的】为了进一步鉴定铜绿假单胞菌转录调控因子σ~(38)对2个拷贝吩嗪合成基因簇(phz A1-G1和phz A2-G2)的具体调控方式并推定介导绿脓菌素合成代谢的可能调控机制。【方法】根据铜绿假单胞菌基因组信息,利用同源重组原理构建rpo S基因缺失突变株Δrpo S以及克隆全长rpo S基因作互补分析;再以单一吩嗪基因簇缺失突变株Δphz1和Δphz2为出发菌株,分别构建rpo S缺失突变株Δrpo Sphz1和rpo S插入突变株Δrpo Sphz2,测定并比较野生株及相关突变株的绿脓菌素合成量,初步推定σ~(38)因子对2个不同吩嗪基因簇表达的调控方式。【结果】在GA培养基中,突变株Δrpo S的绿脓菌素合成量比野生株显著增加;互补分析证实,σ~(38)可使突变株Δrpo S的绿脓菌素降低并接近野生株PAO1水平;与对照株Δphz1相比,突变株Δrpo Sphz1的绿脓菌素合成量因σ~(38)因子缺失而显著减少;而与对照株Δphz2相比,突变株Δrpo Sphz2的绿脓菌素合成量因σ~(38)因子缺失显著增加。【结论】转录调控因子σ~(38)对铜绿假单胞菌绿脓菌素的合成代谢的确具一定的负调控作用;结合已报道的研究结果,初步推定:σ~(38)因子通过负调控吩嗪基因簇phz1,正调控吩嗪基因簇phz2的表达实现对绿脓菌素合成代谢的调控。  相似文献   

7.
[目的]为了研究铜绿假单胞菌全局调控因子RsmA对两个吩嗪(Phenazine)合成基因簇phz1和phz2的调控方式与机制.[方法]采用基因缺失和抗性基因(gentamycin resistance cassette,aacC1)插入相结合的策略构建了rsmA基因缺失突变株PA-RG ;通过构建互补表达载体和过表达载体,进一步确认RsmA对绿脓菌素的调控作用 ;采用电转化方法将构建的翻译融合表达载体pMEZ1(phz1'-'lacZ)和pMEZ2(phz2'-'lacZ)分别导入铜绿假单胞菌突变株PA-RG和野生株PAO1,采用Miller法测定融合β-半乳糖苷酶活性.[结果]在GA培养基中,互补分析和过表达分析表明,RsmA抑制绿脓菌素的合成.此外,pMEZ1在突变株PA-RG中的表达增强,为野生株的2-3倍 ;而pMEZ2在突变株PA-RG中的表达降低,野生株是突变株的2倍.[结论]由此初步判定,铜绿假单胞菌全局调控因子RsmA对两个不同吩嗪合成基因簇的调控作用具有特异性,在一定程度上RsmA负调控phz1,正调控phz2.  相似文献   

8.
假单胞菌M18是一株可同时合成并分泌吩嗪-1-羧酸(Phenazine-1-carboxylic acid,PCA)和藤黄绿脓菌素(Pyoluteorin,Plt)两种抗生物质的生防菌株。为了进一步研究假单胞菌M18抗生物质合成代谢的调控方式与机制,在分别构建gacAr、smA等单基因突变株基础上,又构建了gacArsmA双基因突变株M18GR以及gacA′-l′acZ和rsmA′-′lacZ等翻译融合表达载体(pMEGA和pMERA)。通过在PPM和KMB两种培养基中发酵培养和两种抗生物质PCA和Plt的HPLC定量测定显示,双突变株M18GR的PCA和Plt的合成量不论在PPM还是在KMB培养基中都介于单突变株M18G和M18R之间。由实验结果分析推测,两种调控因子对抗生物质合成的调控作用不是发生在转录水平,很可能发生在转录后水平。由β-半乳糖苷酶的定量分析表明,在假单胞菌M18中,两种调控因子不存在自诱导机制;虽然GacA未调控RsmA的合成,但RsmA可能部分正向调控GacA的表达。  相似文献   

9.
假单胞菌株M18分泌藤黄绿脓菌素(Pyoluteorin,Plt )和吩嗪1羧酸(Phenazine1carboxylic acid, PCA)并抑制多种植物病菌的生长。 从M18中克隆双基因调控系统gacS/gacA的组成基因gacA,并构建了该基因抗性插入突变株M18G。在KMB培养基中,M18G合成Plt的能力受到完全抑制,而PCA的积累约比野生型提高31倍左右。Plt合成基因簇突变株M18T和在M18G基础上构建的PCA合成基因簇突变株M18GA的Plt和PCA合成的动力学变化表明,在M18G菌株中,Plt合成的抑制并不引起PCA的过量积累,PCA的过量积累也不引起Plt合成的抑制。由此推测,gacA在基因表达的水平上全局性地执行着调控功能。  相似文献   

10.
假单胞菌M18是一株能同时合成吩嗪-1-羧酸(PCA)和藤黄绿菌素两种抗生素的植物根际分离细菌。RelA催化合成的效应分子ppGpp能介导细菌因营养饥饿引起的应激反应。以M18菌株染色体DNA为模板,PCR扩增获得relA基因,通过庆大霉素抗性片段插入失活与同源重组技术,构建假单胞菌M18的relA突变菌株M18RAG。在PPM培养基中进行PCA发酵分析,发现突变菌株M18RAG的PCA产量显著升高,约为野生型菌株的1.5-2倍。relA基因反式互补实验以及phzA′-′lacZ翻译融合测定结果,均进一步证明了RelA对PCA生物合成及其基因表达具有抑制作用。  相似文献   

11.
The biosynthesis of antimicrobial metabolites is controlled by the GacS/GacA two-component regulatory system in Pseudomonas species. The production of phenazine-1-carboxylic acid and pyoluteorin is differentially regulated by GacA in Pseudomonas sp. M18. Pyoluteorin was reduced to nondetectable level in culture of the gacA insertional mutant strain M18G grown in King's medium B broth, whereas phenazine-1-carboxylic acid production was increased 30-fold over that of the wild-type strain. Production of both antibiotics was restored to wild-type levels after complementation in trans with the wild-type gacA gene. Expression of the translational fusions phzA'-'lacZ and pltA'-'lacZ confirmed the effect of GacA on both biosynthetic operons.  相似文献   

12.
假单胞菌 (Pseudomonas sp.) M18 是促进植物生长的根际细菌, 能产生吩嗪-1-羧酸 (PCA) 和藤黄绿菌素 (Plt) 两种不同的抗生素。根据生物信息学分析, 铜绿假单胞菌PA2572基因编码蛋白可能是一个双元调控系统的应答调节子。本研究从假单胞菌M18基因组中扩增出PA2572同源基因片段ppbR, 利用体外定点插入突变和同源重组技术构建了M18 的ppbR突变株M18P。研究结果表明, 突变株M18P在泳动能力和群集运动能力上有显著的下降。突变株合成PCA 的能力比野生型有显著的下降, 在发酵液中PCA积累量仅为野生型的50%。在KMB培养基中, 突变株Plt的积累量和野生型没有显著的差异。  相似文献   

13.
【目的】假单胞菌M18是一株能同时合成吩嗪-1-羧酸(PCA)和藤黄绿菌素(Plt)两种抗生素的植物根际促生细菌。PsrA为细菌TetR家族转录调控因子。为了研究PsrA对PCA与Plt生物合成的影响,从M18菌株基因组中扩增psrA基因。【方法】通过同源重组技术,构建庆大霉素抗性片段置换psrA的突变菌株M18psrA。利用基因互补、lacZ报告基因融合分析实验,验证PsrA对抗生素合成基因的调控作用。【结果】在PPM和KMB培养基中,分别比较野生型菌株M18和突变菌株M18psrA的PCA与Plt产量,突变菌株M18psrA的PCA产量显著下降;Plt产量显著升高,为野生型菌株的10-15倍。基因互补、lacZ报告基因融合分析,进一步证明了psrA正调控PCA的phz2合成基因簇,负调控Plt的合成基因簇。【结论】PsrA区别性调控抗生素PCA与Plt的生物合成。  相似文献   

14.
假单胞菌(Pseudomonas sp.)M18是促进植物生长的根际细菌,能产生吩嗪-1-羧酸(PCA)和藤黄绿菌素(Plt)两种不同的抗生素.根据生物信息学分析,铜绿假单胞菌PA2572基因编码蛋白可能是一个双元调控系统的应答调节子.本研究从假单胞菌M18基因组中扩增出PA2572同源基因片段ppbR,利用体外定点插入突变和同源重组技术构建了M18的ppbR突变株M18P.研究结果表明,突变株M18P在泳动能力和群集运动能力上有显著的下降.突变株合成PCA的能力比野生型有显著的下降,在发酵液中PCA积累量仅为野生型的50%.在KMB培养基中,突变株Plt的积累量和野生型没有显著的差异.  相似文献   

15.
Ge YH  Pei DL  Zhao YH  Li WW  Wang SF  Xu YQ 《Current microbiology》2007,54(4):277-281
Biosynthesis and secretion of two different types of antifungal compound [phenazine-1-carboxylic acid (PCA) and pyoluteorin (Plt) in Pseudomonas sp. M18] contribute to its suppression of soil-borne root pathogens. To better understand the correlation between two antifungal agents in secondary metabolism, a DNA fragment covering partial pltC and pltD coding sequences was obtained by screening the genomic library of Pseudomonas sp. M18. A mutant, M18T, was then constructed by insertion of the aacC1 gene cassette (encoding gentamycin resistance). With the same methods, one PCA biosynthetic gene cluster was insertionally inactivated and a mutant M18Z1 was created. The mutant strain M18T produces no Plt and the same amount of PCA in comparison with the wild-type strain M18. The mutant M18Z1, however, produces less PCA but more Plt than the wild-type strain M18. According to the documented data on strain M18, it is suggested that production of PCA is not influenced by Plt yield, but Plt biosynthesis is influenced by an alteration of PCA production.  相似文献   

16.
A new regulator gene named pltZ, which is located downstream of the plt gene cluster in the genome of Pseudomonas sp. M18, was identified, sequenced and characterized in this report. The deduced amino acid sequence of PltZ shares significant homology with other bacterial regulators in the TetR family. The chromosomal pltZ disruption mutant gave rise to 4.4-fold enhancement of pyoluteorin biosynthesis but did not exert significant influence on the accumulation of phenazine-1-carboxylic acid compared with the wild-type M18. The negative regulation of pltZ on pyoluteorin biosynthesis was further confirmed by multiplied pltZ gene dosage experiments and pltA'-'lacZ translational fusion analyses.  相似文献   

17.
假单胞菌M18株pltZ基因转录阻抑藤黄绿菌素ABC转运系统   总被引:1,自引:0,他引:1  
假单胞菌(Pseudomonassp .)M18株的藤黄绿菌素(Pyoluteorin ,Plt )生物合成基因簇下游存在一个Plt生物合成负调控基因pltZ和一个负责Plt分泌及自身抗性的ABC(ATP_bindingcassette)转运系统基因簇。利用启动子探针载体pME6 0 15和pME6 5 2 2分别构建ABC转运基因pltH与lacZ的翻译和转录融合表达质粒pHZLF和pHZCF ,分别引入野生型假单胞菌M18株和pltZ突变菌株M18Z。半乳糖苷酶活性的测定结果表明:在pltZ突变株M18Z中,pltH’-‘lacZ翻译融合表达水平约比野生型提高3 7~8 4倍,pltH’‘lacZ转录融合表达水平显著提高了2 8~7 4倍,表明pltZ能在转录水平上阻抑PltABC转运系统的表达,pltZ很可能通过阻抑PltABC转运系统的表达,间接地负调控Plt的生物合成  相似文献   

18.
To investigate the regulatory mechanism governing antifungal metabolite biosynthesis, two kinds of global regulator genes in Pseudomonas sp. M18, an rpoS and an rsmA gene, were cloned and mutated by inserting with an aacC1 cassette, respectively. Two mutants showed the same regulatory mode with repression of phenazine-1-carboxylic acid and remarkable enhancement of pyoluteorin. In the rpoS-mutant, a translational rsmA'-'lacZ fusion was expressed at the same level corresponding to that in the wild-type strain. In the rsmA-mutant, however, expression of the translational rpoS'-'lacZ fusion was only about 30% of that in the wild-type strain. The results indicated that the absence of RsmA leads to repression of the rpoS gene expression, which has further been confirmed with construction of chromosomal rpoS-lacZ fusion in the rsmA-mutant and the wild-type strain, respectively. The findings showed a new regulatory cascade controlling antifungal metabolite production in Pseudomonas sp. M18, suggesting that RpoS may serve as a mediator in RsmA-dependent regulation of secondary metabolite biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号