首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant‐removal experiment in two Sphagnum‐dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO2 radiocarbon (bomb‐14C) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change.  相似文献   

2.
Boreal peatlands contain approximately 500 Pg carbon (C) in the soil, emit globally significant quantities of methane (CH4), and are highly sensitive to climate change. Warming associated with global climate change is likely to increase the rate of the temperature‐sensitive processes that decompose stored organic carbon and release carbon dioxide (CO2) and CH4. Variation in the temperature sensitivity of CO2 and CH4 production and increased peat aerobicity due to enhanced growing‐season evapotranspiration may alter the nature of peatland trace gas emission. As CH4 is a powerful greenhouse gas with 34 times the warming potential of CO2, it is critical to understand how factors associated with global change will influence surface CO2 and CH4 fluxes. Here, we leverage the Spruce and Peatland Responses Under Changing Environments (SPRUCE) climate change manipulation experiment to understand the impact of a 0–9°C gradient in deep belowground warming (“Deep Peat Heat”, DPH) on peat surface CO2 and CH4 fluxes. We find that DPH treatments increased both CO2 and CH4 emission. Methane production was more sensitive to warming than CO2 production, decreasing the C‐CO2:C‐CH4 of the respired carbon. Methane production is dominated by hydrogenotrophic methanogenesis but deep peat warming increased the δ13C of CH4 suggesting an increasing contribution of acetoclastic methanogenesis to total CH4 production with warming. Although the total quantity of C emitted from the SPRUCE Bog as CH4 is <2%, CH4 represents >50% of seasonal C emissions in the highest‐warming treatments when adjusted for CO2 equivalents on a 100‐year timescale. These results suggest that warming in boreal regions may increase CH4 emissions from peatlands and result in a positive feedback to ongoing warming.  相似文献   

3.
Drained peatlands are hotspots for greenhouse gas (GHG) emissions, which could be mitigated by rewetting and land use change. We performed an ecological/economic analysis of rewetting drained fertile peatlands in a hemiboreal climate using different land use strategies over 80 years. Vegetation, soil processes, and total GHG emissions were modeled using the CoupModel for four scenarios: (1) business as usual—Norway spruce with average soil water table of ?40 cm; (2) willow with groundwater at ?20 cm; (3) reed canary grass with groundwater at ?10 cm; and (4) a fully rewetted peatland. The predictions were based on previous model calibrations with several high‐resolution datasets consisting of water, heat, carbon, and nitrogen cycling. Spruce growth was calibrated by tree‐ring data that extended the time period covered. The GHG balance of four scenarios, including vegetation and soil, were 4.7, 7.1, 9.1, and 6.2 Mg CO2eq ha?1 year?1, respectively. The total soil emissions (including litter and peat respiration CO2 + N2O + CH4) were 33.1, 19.3, 15.3, and 11.0 Mg CO2eq ha?1 year?1, respectively, of which the peat loss contributed 35%, 24%, and 7% of the soil emissions for the three drained scenarios, respectively. No peat was lost for the wet peatland. It was also found that draining increases vegetation growth, but not as drastically as peat respiration does. The cost–benefit analysis (CBA) is sensitive to time frame, discount rate, and carbon price. Our results indicate that the net benefit was greater with a somewhat higher soil water table and when the peatland was vegetated with willow and reed canary grass (Scenarios 2 and 3). We conclude that saving peat and avoiding methane release using fairly wet conditions can significantly reduce GHG emissions, and that this strategy should be considered for land use planning and policy‐making.  相似文献   

4.
The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid‐dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.  相似文献   

5.
Climate warming is leading to permafrost thaw in northern peatlands, and current predictions suggest that thawing will drive greater surface wetness and an increase in methane emissions. Hydrology largely drives peatland vegetation composition, which is a key element in peatland functioning and thus in carbon dynamics. These processes are expected to change. Peatland carbon accumulation is determined by the balance between plant production and peat decomposition. But both processes are expected to accelerate in northern peatlands due to warming, leading to uncertainty in future peatland carbon budgets. Here, we compile a dataset of vegetation changes and apparent carbon accumulation data reconstructed from 33 peat cores collected from 16 sub-arctic peatlands in Fennoscandia and European Russia. The data cover the past two millennia that has undergone prominent changes in climate and a notable increase in annual temperatures toward present times. We show a pattern where European sub-Arctic peatland microhabitats have undergone a habitat change where currently drier habitats dominated by Sphagnum mosses replaced wetter sedge-dominated vegetation and these new habitats have remained relatively stable over the recent decades. Our results suggest an alternative future pathway where sub-arctic peatlands may at least partly sustain dry vegetation and enhance the carbon sink capacity of northern peatlands.  相似文献   

6.
Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open‐top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of ?300 to ?198 g CO2–eq m?2 to a source of 105 to 144 g CO2–eq m?2. At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO2, we provide here the first in situ evidence of increasing N2O emissions from tundra soils with warming. Warming promoted N2O release not only from bare peat, previously identified as a strong N2O source, but also from the abundant, vegetated peat surfaces that do not emit N2O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO2, and CH4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic.  相似文献   

7.
Sphagnum mosses are keystone components of peatland ecosystems. They facilitate the accumulation of carbon in peat deposits, but climate change is predicted to expose peatland ecosystem to sustained and unprecedented warming leading to a significant release of carbon to the atmosphere. Sphagnum responses to climate change, and their interaction with other components of the ecosystem, will determine the future trajectory of carbon fluxes in peatlands. We measured the growth and productivity of Sphagnum in an ombrotrophic bog in northern Minnesota, where ten 12.8‐m‐diameter plots were exposed to a range of whole‐ecosystem (air and soil) warming treatments (+0 to +9°C) in ambient or elevated (+500 ppm) CO2. The experiment is unique in its spatial and temporal scale, a focus on response surface analysis encompassing the range of elevated temperature predicted to occur this century, and consideration of an effect of co‐occurring CO2 altering the temperature response surface. In the second year of warming, dry matter increment of Sphagnum increased with modest warming to a maximum at 5°C above ambient and decreased with additional warming. Sphagnum cover declined from close to 100% of the ground area to <50% in the warmest enclosures. After three years of warming, annual Sphagnum productivity declined linearly with increasing temperature (13–29 g C/m2 per °C warming) due to widespread desiccation and loss of Sphagnum. Productivity was less in elevated CO2 enclosures, which we attribute to increased shading by shrubs. Sphagnum desiccation and growth responses were associated with the effects of warming on hydrology. The rapid decline of the Sphagnum community with sustained warming, which appears to be irreversible, can be expected to have many follow‐on consequences to the structure and function of this and similar ecosystems, with significant feedbacks to the global carbon cycle and climate change.  相似文献   

8.
蒋小雪  金飚 《西北植物学报》2012,32(10):2139-2150
植物对全球气候变化的响应近年来已成为植物学研究热点之一,而有性生殖阶段对环境的变化最敏感。本文较系统地综述了过去数十年气候变化主要因子温度、温室气体、紫外线B辐射和气溶胶对植物花期、授粉受精和生殖产量等有性生殖过程的影响。主要概括:(1)温度适度升高促使大部分植物花期提前,加速授粉受精过程,但同时使传粉者活动期和花期分离而影响授粉受精,其部分增加生殖产量,但温度过高则减少产量。(2)温室气体中水汽过多或过少都减少植物生殖产量;CO2浓度升高一般有利于植物授粉受精,增加生殖产量;O3浓度增加则不利于植物生殖生长。(3)增强的UV-B辐射影响植物花期,不利于授粉受精,对生殖产量影响复杂。(4)气溶胶排放量增加对植物生殖产量的影响依据气溶胶浓度、植物冠层结构和环境条件不同而异。最后分析总结了国内外相关研究中仍存在的不足之处,为更好理解和深入研究植物对气候变化的响应机制提供参考。  相似文献   

9.
Human activities result in a wide array of pollutants being released to the atmosphere. A number of these pollutants have direct effects on plants, including carbon dioxide (CO2), which is the substrate for photosynthesis, and ozone (O3), a damaging oxidant. How plants respond to changes in these atmospheric air pollutants, both directly and indirectly, feeds back on atmospheric composition and climate, global net primary productivity and ecosystem service provisioning. Here we discuss the past, current and future trends in emissions of CO2 and O3 and synthesise the current atmospheric CO2 and O3 budgets, describing the important role of vegetation in determining the atmospheric burden of those pollutants. While increased atmospheric CO2 concentration over the past 150 years has been accompanied by greater CO2 assimilation and storage in terrestrial ecosystems, there is evidence that rising temperatures and increased drought stress may limit the ability of future terrestrial ecosystems to buffer against atmospheric emissions. Long‐term Free Air CO2 or O3 Enrichment (FACE) experiments provide critical experimentation about the effects of future CO2 and O3 on ecosystems, and highlight the important interactive effects of temperature, nutrients and water supply in determining ecosystem responses to air pollution. Long‐term experimentation in both natural and cropping systems is needed to provide critical empirical data for modelling the effects of air pollutants on plant productivity in the decades to come.  相似文献   

10.
微生物介导的碳氮循环过程对全球气候变化的响应   总被引:10,自引:0,他引:10  
沈菊培  贺纪正 《生态学报》2011,31(11):2957-2967
土壤是地球表层最为重要的碳库也是温室气体的源或汇。自工业革命以来,对土壤温室气体的容量、收支平衡和通量等已有较多研究和估算,但对关键过程及其源/汇的研究却十分有限。微生物是土壤碳氮转化的主要驱动者, 在生态系统碳氮循环过程中扮演重要的角色,对全球气候变化有着响应的响应、适应及反馈,然而其个体数量,群落结构和多样性如何与气候扰动相互关联、进而怎样影响生态系统过程的问题仍有待进一步探索。从微生物介导的碳氮循环过程入手,重点讨论微生物对气候变化包括温室气体(CO2,CH4,N2O)增加、全球变暖、大气氮沉降等的响应和反馈,并由此提出削减温室气体排放的可能途径和今后发展的方向。  相似文献   

11.
Worldwide, regularly recurring wildfires shape many peatland ecosystems to the extent that fire‐adapted species often dominate plant communities, suggesting that wildfire is an integral part of peatland ecology rather than an anomaly. The most destructive blazes are smoldering fires that are usually initiated in periods of drought and can combust entire peatland carbon stores. However, peatland wildfires more typically occur as low‐severity surface burns that arise in the dormant season when vegetation is desiccated, and soil moisture is high. In such low‐severity fires, surface layers experience flash heating, but there is little loss of underlying peat to combustion. This study examines the potential importance of such processes in several peatlands that span a gradient from hemiboreal to tropical ecozones and experience a wide range of fire return intervals. We show that low‐severity fires can increase the pool of stable soil carbon by thermally altering the chemistry of soil organic matter (SOM), thereby reducing rates of microbial respiration. Using X‐ray photoelectron spectroscopy and Fourier transform infrared, we demonstrate that low‐severity fires significantly increase the degree of carbon condensation and aromatization of SOM functional groups, particularly on the surface of peat aggregates. Laboratory incubations show lower CO2 emissions from peat subjected to low‐severity fire and predict lower cumulative CO2 emissions from burned peat after 1–3 years. Also, low‐severity fires reduce the temperature sensitivity (Q10) of peat, indicating that these fires can inhibit microbial access to SOM. The increased stability of thermally altered SOM may allow a greater proportion of organic matter to survive vertical migration into saturated and anaerobic zones of peatlands where environmental conditions physiochemically protect carbon stores from decomposition for thousands of years. Thus, across latitudes, low‐severity fire is an overlooked factor influencing carbon cycling in peatlands, which is relevant to global carbon budgets as climate change alters fire regimes worldwide.  相似文献   

12.
The aquatic pathway is increasingly being recognized as an important component of catchment carbon and greenhouse gas (GHG) budgets, particularly in peatland systems due to their large carbon store and strong hydrological connectivity. In this study, we present a complete 5‐year data set of all aquatic carbon and GHG species from an ombrotrophic Scottish peatland. Measured species include particulate and dissolved forms of organic carbon (POC, DOC), dissolved inorganic carbon (DIC), CO2, CH4 and N2O. We show that short‐term variability in concentrations exists across all species and this is strongly linked to discharge. Seasonal cyclicity was only evident in DOC, CO2 and CH4 concentration; however, temperature correlated with monthly means in all species except DIC. Although the temperature correlation with monthly DOC and POC concentrations appeared to be related to biological productivity in the terrestrial system, we suggest the temperature correlation with CO2 and CH4 was primarily due to in‐stream temperature‐dependent solubility. Interannual variability in total aquatic carbon concentration was strongly correlated with catchment gross primary productivity (GPP) indicating a strong potential terrestrial aquatic linkage. DOC represented the largest aquatic carbon flux term (19.3 ± 4.59 g C m?2 yr?1), followed by CO2 evasion (10.0 g C m?2 yr?1). Despite an estimated contribution to the total aquatic carbon flux of between 8 and 48%, evasion estimates had the greatest uncertainty. Interannual variability in total aquatic carbon export was low in comparison with variability in terrestrial biosphere–atmosphere exchange, and could be explained primarily by temperature and precipitation. Our results therefore suggest that climatic change is likely to have a significant impact on annual carbon losses through the aquatic pathway, and as such, aquatic exports are fundamental to the understanding of whole catchment responses to climate change.  相似文献   

13.
An invasive wetland grass primes deep soil carbon pools   总被引:1,自引:0,他引:1       下载免费PDF全文
Understanding the processes that control deep soil carbon (C) dynamics and accumulation is of key importance, given the relevance of soil organic matter (SOM) as a vast C pool and climate change buffer. Methodological constraints of measuring SOM decomposition in the field prevent the addressing of real‐time rhizosphere effects that regulate nutrient cycling and SOM decomposition. An invasive lineage of Phragmites australis roots deeper than native vegetation (Schoenoplectus americanus and Spartina patens) in coastal marshes of North America and has potential to dramatically alter C cycling and accumulation in these ecosystems. To evaluate the effect of deep rooting on SOM decomposition we designed a mesocosm experiment that differentiates between plant‐derived, surface SOM‐derived (0–40 cm, active root zone of native marsh vegetation), and deep SOM‐derived mineralization (40–80 cm, below active root zone of native vegetation). We found invasive P. australis allocated the highest proportion of roots in deeper soils, differing significantly from the native vegetation in root : shoot ratio and belowground biomass allocation. About half of the CO2 produced came from plant tissue mineralization in invasive and native communities; the rest of the CO2 was produced from SOM mineralization (priming). Under P. australis, 35% of the CO2 was produced from deep SOM priming and 9% from surface SOM. In the native community, 9% was produced from deep SOM priming and 44% from surface SOM. SOM priming in the native community was proportional to belowground biomass, while P. australis showed much higher priming with less belowground biomass. If P. australis deep rooting favors the decomposition of deep‐buried SOM accumulated under native vegetation, P. australis invasion into a wetland could fundamentally change SOM dynamics and lead to the loss of the C pool that was previously sequestered at depth under the native vegetation, thereby altering the function of a wetland as a long‐term C sink.  相似文献   

14.
Anthropogenic activities such as uncontrolled deforestation and increasing greenhouse gas emissions are responsible for triggering a series of environmental imbalances that affect the Earth's complex climate dynamics. As a consequence of these changes, several climate models forecast an intensification of extreme weather events over the upcoming decades, including heat waves and increasingly severe drought and flood episodes. The occurrence of such extreme weather will prompt profound changes in several plant communities, resulting in massive forest dieback events that can trigger a massive loss of biodiversity in several biomes worldwide. Despite the gravity of the situation, our knowledge regarding how extreme weather events can undermine the performance, survival, and distribution of forest species remains very fragmented. Therefore, the present review aimed to provide a broad and integrated perspective of the main biochemical, physiological, and morpho‐anatomical disorders that may compromise the performance and survival of forest species exposed to climate change factors, particularly drought, flooding, and global warming. In addition, we also discuss the controversial effects of high CO2 concentrations in enhancing plant growth and reducing the deleterious effects of some extreme climatic events. We conclude with a discussion about the possible effects that the factors associated with the climate change might have on species distribution and forest composition.  相似文献   

15.
Thawing permafrost in the sub‐Arctic has implications for the physical stability and biological dynamics of peatland ecosystems. This study provides an analysis of how permafrost thawing and subsequent vegetation changes in a sub‐Arctic Swedish mire have changed the net exchange of greenhouse gases, carbon dioxide (CO2) and CH4 over the past three decades. Images of the mire (ca. 17 ha) and surroundings taken with film sensitive in the visible and the near infrared portion of the spectrum, [i.e. colour infrared (CIR) aerial photographs from 1970 and 2000] were used. The results show that during this period the area covered by hummock vegetation decreased by more than 11% and became replaced by wet‐growing plant communities. The overall net uptake of C in the vegetation and the release of C by heterotrophic respiration might have increased resulting in increases in both the growing season atmospheric CO2 sink function with about 16% and the CH4 emissions with 22%. Calculating the flux as CO2 equivalents show that the mire in 2000 has a 47% greater radiative forcing on the atmosphere using a 100‐year time horizon. Northern peatlands in areas with thawing sporadic or discontinuous permafrost are likely to act as larger greenhouse gas sources over the growing season today than a few decades ago because of increased CH4 emissions.  相似文献   

16.
Climate change reduces the net sink of CH4 and N2O in a semiarid grassland   总被引:1,自引:0,他引:1  
Atmospheric concentrations of methane (CH4) and nitrous oxide (N2O) have increased over the last 150 years because of human activity. Soils are important sources and sinks of both potent greenhouse gases where their production and consumption are largely regulated by biological processes. Climate change could alter these processes thereby affecting both rate and direction of their exchange with the atmosphere. We examined how a rise in atmospheric CO2 and temperature affected CH4 and N2O fluxes in a well‐drained upland soil (volumetric water content ranging between 6% and 23%) in a semiarid grassland during five growing seasons. We hypothesized that responses of CH4 and N2O fluxes to elevated CO2 and warming would be driven primarily by treatment effects on soil moisture. Previously we showed that elevated CO2 increased and warming decreased soil moisture in this grassland. We therefore expected that elevated CO2 and warming would have opposing effects on CH4 and N2O fluxes. Methane was taken up throughout the growing season in all 5 years. A bell‐shaped relationship was observed with soil moisture with highest CH4 uptake at intermediate soil moisture. Both N2O emission and uptake occurred at our site with some years showing cumulative N2O emission and other years showing cumulative N2O uptake. Nitrous oxide exchange switched from net uptake to net emission with increasing soil moisture. In contrast to our hypothesis, both elevated CO2 and warming reduced the sink of CH4 and N2O expressed in CO2 equivalents (across 5 years by 7% and 11% for elevated CO2 and warming respectively) suggesting that soil moisture changes were not solely responsible for this reduction. We conclude that in a future climate this semiarid grassland may become a smaller sink for atmospheric CH4 and N2O expressed in CO2‐equivalents.  相似文献   

17.
Direct and indirect effects of warming are increasingly modifying the carbon-rich vegetation and soils of the Arctic tundra, with important implications for the terrestrial carbon cycle. Understanding the biological and environmental influences on the processes that regulate foliar carbon cycling in tundra species is essential for predicting the future terrestrial carbon balance in this region. To determine the effect of climate change impacts on gas exchange in tundra, we quantified foliar photosynthesis (Anet), respiration in the dark and light (RD and RL, determined using the Kok method), photorespiration (PR), carbon gain efficiency (CGE, the ratio of photosynthetic CO2 uptake to total CO2 exchange of photosynthesis, PR, and respiration), and leaf traits of three dominant species – Betula nana, a woody shrub; Eriophorum vaginatum, a graminoid; and Rubus chamaemorus, a forb – grown under long-term warming and fertilization treatments since 1989 at Toolik Lake, Alaska. Under warming, B. nana exhibited the highest rates of Anet and strongest light inhibition of respiration, increasing CGE nearly 50% compared with leaves grown in ambient conditions, which corresponded to a 52% increase in relative abundance. Gas exchange did not shift under fertilization in B. nana despite increases in leaf N and P and near-complete dominance at the community scale, suggesting a morphological rather than physiological response. Rubus chamaemorus, exhibited minimal shifts in foliar gas exchange, and responded similarly to B. nana under treatment conditions. By contrast, E. vaginatum, did not significantly alter its gas exchange physiology under treatments and exhibited dramatic decreases in relative cover (warming: −19.7%; fertilization: −79.7%; warming with fertilization: −91.1%). Our findings suggest a foliar physiological advantage in the woody shrub B. nana that is further mediated by warming and increased soil nutrient availability, which may facilitate shrub expansion and in turn alter the terrestrial carbon cycle in future tundra environments.  相似文献   

18.
Widespread changes in arctic and boreal Normalized Difference Vegetation Index (NDVI) values captured by satellite platforms indicate that northern ecosystems are experiencing rapid ecological change in response to climate warming. Increasing temperatures and altered hydrology are driving shifts in ecosystem biophysical properties that, observed by satellites, manifest as long‐term changes in regional NDVI. In an effort to examine the underlying ecological drivers of these changes, we used field‐scale remote sensing of NDVI to track peatland vegetation in experiments that manipulated hydrology, temperature, and carbon dioxide (CO2) levels. In addition to NDVI, we measured percent cover by species and leaf area index (LAI). We monitored two peatland types broadly representative of the boreal region. One site was a rich fen located near Fairbanks, Alaska, at the Alaska Peatland Experiment (APEX), and the second site was a nutrient‐poor bog located in Northern Minnesota within the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found that NDVI decreased with long‐term reductions in soil moisture at the APEX site, coincident with a decrease in photosynthetic leaf area and the relative abundance of sedges. We observed increasing NDVI with elevated temperature at the SPRUCE site, associated with an increase in the relative abundance of shrubs and a decrease in forb cover. Warming treatments at the SPRUCE site also led to increases in the LAI of the shrub layer. We found no strong effects of elevated CO2 on community composition. Our findings support recent studies suggesting that changes in NDVI observed from satellite platforms may be the result of changes in community composition and ecosystem structure in response to climate warming.  相似文献   

19.
Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century‐ to millennia‐old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ 14C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf‐shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf‐shrubs and graminoids prime microbial decomposition of previously ‘locked‐up’ organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant‐induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change.  相似文献   

20.
Vegetation exerts large control on global biogeochemical cycles through the processes of photosynthesis and transpiration that exchange CO2 and water between the land and the atmosphere. Increasing atmospheric CO2 concentrations exert direct effects on vegetation through enhanced photosynthesis and reduced stomatal conductance, and indirect effects through changes in climatic variables that drive these processes. How these direct and indirect CO2 impacts interact with each other to affect plant productivity and water use has not been explicitly analysed and remains unclear, yet is important to fully understand the response of the global carbon cycle to future climate change. Here, we use a set of factorial modelling experiments to quantify the direct and indirect impacts of atmospheric CO2 and their interaction on yield and water use in bioenergy short rotation coppice poplar, in addition to quantifying the impact of other environmental drivers such as soil type. We use the JULES land‐surface model forced with a ten‐member ensemble of projected climate change for 2100 with atmospheric CO2 concentrations representative of the A1B emissions scenario. We show that the simulated response of plant productivity to future climate change was nonadditive in JULES, however this nonadditivity was not apparent for plant transpiration. The responses of both growth and transpiration under all experimental scenarios were highly variable between sites, highlighting the complexity of interactions between direct physiological CO2 effects and indirect climate effects. As a result, no general pattern explaining the response of bioenergy poplar water use and yield to future climate change could be discerned across sites. This study suggests attempts to infer future climate change impacts on the land biosphere from studies that force with either the direct or indirect CO2 effects in isolation from each other may lead to incorrect conclusions in terms of both the direction and magnitude of plant response to future climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号