首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Peat mosses (Sphagnum spp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits. Sphagnum mosses harbor a diverse assemblage of microbial partners, including N2-fixing (diazotrophic) and CH4-oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of the Sphagnum phytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO2 (+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH4, CO2) and nitrogen (NH4-N) cycling from the belowground environment up to Sphagnum and its associated microbiome, we identified a series of cascading impacts to the Sphagnum phytobiome triggered by warming and elevated CO2. Under ambient CO2, warming increased plant-available NH4-N in surface peat, excess N accumulated in Sphagnum tissue, and N2 fixation activity decreased. Elevated CO2 offset the effects of warming, disrupting the accumulation of N in peat and Sphagnum tissue. Methane concentrations in porewater increased with warming irrespective of CO2 treatment, resulting in a ~10× rise in methanotrophic activity within Sphagnum from the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane-induced N2 fixation and significant losses of keystone microbial taxa. In addition to changes in the Sphagnum microbiome, we observed ~94% mortality of Sphagnum between the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N-availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of the Sphagnum phytobiome to rising temperatures and atmospheric CO2 concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands.  相似文献   

2.
The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid‐dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.  相似文献   

3.
Climate change will influence plant photosynthesis by altering patterns of temperature and precipitation, including their variability and seasonality. Both effects may be important for peatlands as the carbon (C) sink potential of these ecosystems depends on the balance between plant C uptake through photosynthesis and microbial decomposition. Here, we show that the effect of climate warming on Sphagnum community photosynthesis toggles from positive to negative as the peatland goes from rainy to dry periods during summer. More particularly, we show that mechanisms of compensation among the dominant Sphagnum species (Sphagnum fallax and Sphagnum medium) stabilize the average photosynthesis and productivity of the Sphagnum community during summer despite rising temperatures and frequent droughts. While warming had a negligible effect on S. medium photosynthetic capacity (Amax) during rainy periods, Amax of S. fallax increased by 40%. On the opposite, warming exacerbated the negative effects of droughts on S. fallax with an even sharper decrease of its Amax while S. medium Amax remained unchanged. S. medium showed a remarkable resistance to droughts due to anatomical traits favouring its water holding capacity. Our results show that different phenotypic plasticity among dominant Sphagnum species allow the community to cope with rising temperatures and repeated droughts, maintaining similar photosynthesis and productivity over summer in warmed and control conditions. These results are important because they provide information on how soil water content may modulate the effects of climate warming on Sphagnum productivity in boreal peatlands. It further confirms the transitory nature of warming‐induced photosynthesis benefits in boreal systems and highlights the vulnerability of the ecosystem to excess warming and drying.  相似文献   

4.
Sphagnum‐dominated peatlands comprise a globally important pool of soil carbon (C) and are vulnerable to climate change. While peat mosses of the genus Sphagnum are known to harbor diverse microbial communities that mediate C and nitrogen (N) cycling in peatlands, the effects of climate change on Sphagnum microbiome composition and functioning are largely unknown. We investigated the impacts of experimental whole‐ecosystem warming on the Sphagnum moss microbiome, focusing on N2 fixing microorganisms (diazotrophs). To characterize the microbiome response to warming, we performed next‐generation sequencing of small subunit (SSU) rRNA and nitrogenase (nifH) gene amplicons and quantified rates of N2 fixation activity in Sphagnum fallax individuals sampled from experimental enclosures over 2 years in a northern Minnesota, USA bog. The taxonomic diversity of overall microbial communities and diazotroph communities, as well as N2 fixation rates, decreased with warming (p < 0.05). Following warming, diazotrophs shifted from a mixed community of Nostocales (Cyanobacteria) and Rhizobiales (Alphaproteobacteria) to predominance of Nostocales. Microbiome community composition differed between years, with some diazotroph populations persisting while others declined in relative abundance in warmed plots in the second year. Our results demonstrate that warming substantially alters the community composition, diversity, and N2 fixation activity of peat moss microbiomes, which may ultimately impact host fitness, ecosystem productivity, and C storage potential in peatlands.  相似文献   

5.
Rising atmospheric carbon dioxide (CO2) concentrations may warm northern latitudes up to 8°C by the end of the century. Boreal forests play a large role in the global carbon cycle, and the responses of northern trees to climate change will thus impact the trajectory of future CO2 increases. We grew two North American boreal tree species at a range of future climate conditions to assess how growth and carbon fluxes were altered by high CO2 and warming. Black spruce (Picea mariana, an evergreen conifer) and tamarack (Larix laricina, a deciduous conifer) were grown under ambient (407 ppm) or elevated CO2 (750 ppm) and either ambient temperatures, a 4°C warming, or an 8°C warming. In both species, the thermal optimum of net photosynthesis (ToptA) increased and maximum photosynthetic rates declined in warm‐grown seedlings, but the strength of these changes varied between species. Photosynthetic capacity (maximum rates of Rubisco carboxylation, Vcmax, and of electron transport, Jmax) was reduced in warm‐grown seedlings, correlating with reductions in leaf N and chlorophyll concentrations. Warming increased the activation energy for Vcmax and Jmax (EaV and EaJ, respectively) and the thermal optimum for Jmax. In both species, the ToptA was positively correlated with both EaV and EaJ, but negatively correlated with the ratio of Jmax/Vcmax. Respiration acclimated to elevated temperatures, but there were no treatment effects on the Q10 of respiration (the increase in respiration for a 10°C increase in leaf temperature). A warming of 4°C increased biomass in tamarack, while warming reduced biomass in spruce. We show that climate change is likely to negatively affect photosynthesis and growth in black spruce more than in tamarack, and that parameters used to model photosynthesis in dynamic global vegetation models (EaV and EaJ) show no response to elevated CO2.  相似文献   

6.
Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century‐ to millennia‐old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ 14C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf‐shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf‐shrubs and graminoids prime microbial decomposition of previously ‘locked‐up’ organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant‐induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change.  相似文献   

7.
Boreal peatlands contain approximately 500 Pg carbon (C) in the soil, emit globally significant quantities of methane (CH4), and are highly sensitive to climate change. Warming associated with global climate change is likely to increase the rate of the temperature‐sensitive processes that decompose stored organic carbon and release carbon dioxide (CO2) and CH4. Variation in the temperature sensitivity of CO2 and CH4 production and increased peat aerobicity due to enhanced growing‐season evapotranspiration may alter the nature of peatland trace gas emission. As CH4 is a powerful greenhouse gas with 34 times the warming potential of CO2, it is critical to understand how factors associated with global change will influence surface CO2 and CH4 fluxes. Here, we leverage the Spruce and Peatland Responses Under Changing Environments (SPRUCE) climate change manipulation experiment to understand the impact of a 0–9°C gradient in deep belowground warming (“Deep Peat Heat”, DPH) on peat surface CO2 and CH4 fluxes. We find that DPH treatments increased both CO2 and CH4 emission. Methane production was more sensitive to warming than CO2 production, decreasing the C‐CO2:C‐CH4 of the respired carbon. Methane production is dominated by hydrogenotrophic methanogenesis but deep peat warming increased the δ13C of CH4 suggesting an increasing contribution of acetoclastic methanogenesis to total CH4 production with warming. Although the total quantity of C emitted from the SPRUCE Bog as CH4 is <2%, CH4 represents >50% of seasonal C emissions in the highest‐warming treatments when adjusted for CO2 equivalents on a 100‐year timescale. These results suggest that warming in boreal regions may increase CH4 emissions from peatlands and result in a positive feedback to ongoing warming.  相似文献   

8.
Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO2 exchange depended on vegetation composition. The greatest increase in CO2 sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH4 was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change.  相似文献   

9.
We studied the effects of elevated CO2 (180–200 ppmv above ambient) on growth and chemistry of three moss species (Sphagnum palustre, S. recurvum and Polytrichum commune) in a lowland peatland in the Netherlands. Thereto, we conducted both a greenhouse experiment with both Sphagnum species and a field experiment with all three species using MiniFACE (Free Air CO2 Enrichment) technology during 3 years. The greenhouse experiment showed that Sphagnum growth was stimulated by elevated CO2 in the short term, but that in the longer term (≥1 year) growth was probably inhibited by low water tables and/or down-regulation of photosynthesis. In the field experiment, we did not find significant changes in moss abundance in response to elevated CO2, although CO2 enrichment appeared to reduce S. recurvum abundance. Both Sphagnum species showed stronger responses to spatial variation in hydrology than to increased atmospheric CO2 concentrations. Polytrichum was insensitive to changes in hydrology. Apart from the confounding effects of hydrology, the relative lack of growth response of the moss species may also have been due to the relatively small increase in assimilated CO2 as achieved by the experimentally added CO2. We calculated that the added CO2 contributed at most 32% to the carbon assimilation of the mosses, while our estimates based on stable C isotope data even suggest lower contributions for Sphagnum (24–27%). Chemical analyses of the mosses showed only small elevated CO2 effects on living tissue N concentration and C/N ratio of the mosses, but the C/N ratio of Polytrichum was substantially lower than those of the Sphagnum species. Continuing expansion of Polytrichum at the expense of Sphagnum could reduce the C sink function of this lowland Sphagnum peatland, and similar ones elsewhere, as litter decomposition rates would probably be enhanced. Such a reduction in sink function would be driven mostly by increased atmospheric N deposition, water table regulation for agricultural purposes and land management to preserve the early successional stage (mowing, tree and shrub removal), since these anthropogenic factors will probably exert a greater control on competition between Polytrichum and Sphagnum than increased atmospheric CO2 concentrations.  相似文献   

10.
The reintroduction of Sphagnum fragments has been found to be a promising method for restoring mire vegetation in a cutaway peatland. Although it is known that moisture controls Sphagnum photosynthesis, information concerning the sensitivity of carbon dynamics on water‐level variation is still scarce. In a 4‐year field experiment, we studied the carbon dynamics of reintroduced Sphagnum angustifolium material in a restored (rewetted) cutaway peatland. Cutaway peatland restored by Sphagnum reintroduction showed high sensitivity to variation in water level. Water level controlled both photosynthesis and respiration. Gross photosynthesis (PG) had a unimodal response to water‐level variation with optimum level at ?12 cm. The range of water level for high PG (above 60% of the maximum light‐saturated PG) was between 22 and 1 cm below soil surface. Water level had a dual effect on total respiration. When the water level was below soil surface, peat respiration increased rapidly along the lowering water level until the respiration rate started to slow down at approximately ?30 cm. Contrary to peat respiration, the response of Sphagnum respiration to water‐level variation resembled that of photosynthesis with an optimum at ?12 cm. In optimal conditions, Sphagnum reintroduction turned the cutaway site from carbon source to a sink of 23 g C/m2 per season (mid‐May to the end of September). In dry conditions, lowered photosynthesis together with the higher peat respiration led to a net loss of 56 g C/m2. Although the water level above the optimum amplitude restricted CO2 fixation, a decrease in peat respiration led to a positive CO2 balance of 9 g C/m2.  相似文献   

11.
Arctic and Boreal terrestrial ecosystems are important components of the climate system because they contain vast amounts of soil carbon (C). Evidence suggests that deciduous shrubs are increasing in abundance, but the implications for ecosystem C budgets remain uncertain. Using midsummer CO2 flux data from 21 sites spanning 16° of latitude in the Arctic and Boreal biomes, we show that air temperature explains c. one‐half of the variation in ecosystem respiration (ER) and that ER drives the pattern in net ecosystem CO2 exchange across ecosystems. Woody sites were slightly stronger C sinks compared with herbaceous communities. However, woody sites with warm soils (> 10 °C) were net sources of CO2, whereas woody sites with cold soils (< 10 °C) were strong sinks. Our results indicate that transition to a shrub‐dominated Arctic will increase the rate of C cycling, and may lead to net C loss if soil temperatures rise.  相似文献   

12.
In autumn, agricultural perennial weeds prepare for winter and can store reserves into creeping roots or rhizomes. Little is known about influence of climate change in this period. We tested the effect of simulated climate change in autumn on three widespread and noxious perennial weeds, Elymus repens (L.) Gould, Cirsium arvense (L.) Scop. and Sonchus arvensis L. We divided and combined simulated climate change components into elevated CO2 concentration (525 ppm), elevated temperatures (+2–2.5°C), treatments in open‐top chambers. In addition, a control in the open‐top chamber without any increase in CO2 and temperature, and a field control outside the chambers were included. Two geographically different origins and three pre‐growth periods prior to the exposure to climate change factors were included for each species. All species increased leaf area under elevated temperature, close to doubling in E. repens and quadrupling in the dicot species. E. repens kept leaves green later in autumn. C. arvense did not benefit in below‐ground growth from more leaf area or leaf dry mass. S. arvensis had low levels of leaf area throughout the experiment and withered earlier than the two other species. Below‐ground plant parts of S. arvensis were significantly increased by elevated temperature. Except for root:shoot ratio of C. arvense, the effects of pure elevated CO2 were not significant for any variables compared to the open‐top chamber control. There was an additive, but no synergistic, effect of enhanced temperature and CO2. The length of pre‐growth period was highly important for autumn plant growth, while origin had minor effect. We conclude that the small transfer of enhanced above‐ground growth into below‐ground growth under climate change in autumn does not favour creeping perennial plants per se, but more leaf area may offer more plant biomass to be tackled by chemical or physical weed control.  相似文献   

13.
Climate change‐induced warming and ocean acidification are considered two imminent threats to marine biodiversity and current ecosystem structures. Here, we have for the first time examined an animal's response to a complete life cycle of exposure to co‐occurring warming (+3°C) and ocean acidification (+1,600 μatm CO2), using the key subarctic planktonic copepod, Calanus finmarchicus, as a model species. The animals were generally negatively affected by warming, which significantly reduced the females’ energy status and reproductive parameters (respectively, 95% and 69%–87% vs. control). Unexpectedly, simultaneous acidification partially offset the negative effect of warming in an antagonistic manner, significantly improving reproductive parameters and hatching success (233%–340% improvement vs. single warming exposure). The results provide proof of concept that ocean acidification may partially offset negative effects caused by warming in some species. Possible explanations and ecological implications for the observed antagonistic effect are discussed.  相似文献   

14.
Widespread changes in arctic and boreal Normalized Difference Vegetation Index (NDVI) values captured by satellite platforms indicate that northern ecosystems are experiencing rapid ecological change in response to climate warming. Increasing temperatures and altered hydrology are driving shifts in ecosystem biophysical properties that, observed by satellites, manifest as long‐term changes in regional NDVI. In an effort to examine the underlying ecological drivers of these changes, we used field‐scale remote sensing of NDVI to track peatland vegetation in experiments that manipulated hydrology, temperature, and carbon dioxide (CO2) levels. In addition to NDVI, we measured percent cover by species and leaf area index (LAI). We monitored two peatland types broadly representative of the boreal region. One site was a rich fen located near Fairbanks, Alaska, at the Alaska Peatland Experiment (APEX), and the second site was a nutrient‐poor bog located in Northern Minnesota within the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found that NDVI decreased with long‐term reductions in soil moisture at the APEX site, coincident with a decrease in photosynthetic leaf area and the relative abundance of sedges. We observed increasing NDVI with elevated temperature at the SPRUCE site, associated with an increase in the relative abundance of shrubs and a decrease in forb cover. Warming treatments at the SPRUCE site also led to increases in the LAI of the shrub layer. We found no strong effects of elevated CO2 on community composition. Our findings support recent studies suggesting that changes in NDVI observed from satellite platforms may be the result of changes in community composition and ecosystem structure in response to climate warming.  相似文献   

15.
To study vegetation feedbacks of nutrient addition on carbon sequestration capacity, we investigated vegetation and ecosystem CO2 exchange at Mer Bleue Bog, Canada in plots that had been fertilized with nitrogen (N) or with N plus phosphorus (P) and potassium (K) for 7–12 years. Gross photosynthesis, ecosystem respiration, and net CO2 exchange were measured weekly during May–September 2011 using climate‐controlled chambers. A substrate‐induced respiration technique was used to determine the functional ability of the microbial community. The highest N and NPK additions were associated with 40% less net CO2 uptake than the control. In the NPK additions, a diminished C sink potential was due to a 20–30% increase in ecosystem respiration, while gross photosynthesis rates did not change as greater vascular plant biomass compensated for the decrease in Sphagnum mosses. In the highest N‐only treatment, small reductions in gross photosynthesis and no change in ecosystem respiration led to the reduced C sink. Substrate‐induced microbial respiration was significantly higher in all levels of NPK additions compared with control. The temperature sensitivity of respiration in the plots was lower with increasing cumulative N load, suggesting more labile sources of respired CO2. The weaker C sink potential could be explained by changes in nutrient availability, higher woody : foliar ratio, moss loss, and enhanced decomposition. Stronger responses to NPK fertilization than to N‐only fertilization for both shrub biomass production and decomposition suggest that the bog ecosystem is N‐P/K colimited rather than N‐limited. Negative effects of further N‐only deposition were indicated by delayed spring CO2 uptake. In contrast to forests, increased wood formation and surface litter accumulation in bogs seem to reduce the C sink potential owing to the loss of peat‐forming Sphagnum.  相似文献   

16.
Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant‐removal experiment in two Sphagnum‐dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO2 radiocarbon (bomb‐14C) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change.  相似文献   

17.
Soil warming alters microbial substrate use in alpine soils   总被引:2,自引:0,他引:2  
Will warming lead to an increased use of older soil organic carbon (SOC) by microbial communities, thereby inducing C losses from C‐rich alpine soils? We studied soil microbial community composition, activity, and substrate use after 3 and 4 years of soil warming (+4 °C, 2007–2010) at the alpine treeline in Switzerland. The warming experiment was nested in a free air CO2 enrichment experiment using depleted 13CO213C = ?30‰, 2001–2009). We traced this depleted 13C label in phospholipid fatty acids (PLFA) of the organic layer (0–5 cm soil depth) and in C mineralized from root‐free soils to distinguish substrate ages used by soil microorganisms: fixed before 2001 (‘old’), from 2001 to 2009 (‘new’) or in 2010 (‘recent’). Warming induced a sustained stimulation of soil respiration (+38%) without decline in mineralizable SOC. PLFA concentrations did not reveal changes in microbial community composition due to soil warming, but soil microbial metabolic activity was stimulated (+66%). Warming decreased the amount of new and recent C in the fungal biomarker 18:2ω6,9 and the amount of new C mineralized from root‐free soils, implying a shift in microbial substrate use toward a greater use of old SOC. This shift in substrate use could indicate an imbalance between C inputs and outputs, which could eventually decrease SOC storage in this alpine ecosystem.  相似文献   

18.
Northern peatlands form a major soil carbon (C) stock. With climate change, peatland C mineralization is expected to increase, which in turn would accelerate climate change. A particularity of peatlands is the importance of soil aeration, which regulates peatland functioning and likely modulates the responses to warming climate. Our aim is to assess the impacts of warming on a southern boreal and a sub‐arctic sedge fen carbon dioxide (CO2) exchange under two plausible water table regimes: wet and moderately dry. We focused this study on minerotrophic treeless sedge fens, as they are common peatland types at boreal and (sub)arctic areas, which are expected to face the highest rates of climate warming. In addition, fens are expected to respond to environmental changes faster than the nutrient poor bogs. Our study confirmed that CO2 exchange is more strongly affected by drying than warming. Experimental water level draw‐down (WLD) significantly increased gross photosynthesis and ecosystem respiration. Warming alone had insignificant impacts on the CO2 exchange components, but when combined with WLD it further increased ecosystem respiration. In the southern fen, CO2 uptake decreased due to WLD, which was amplified by warming, while at northern fen it remained stable. As a conclusion, our results suggest that a very small difference in the WLD may be decisive, whether the C sink of a fen decreases, or whether the system is able to adapt within its regime and maintain its functions. Moreover, the water table has a role in determining how much the increased temperature impacts the CO2 exchange.  相似文献   

19.
Climate warming affects plant physiology through genetic adaptation and phenotypic plasticity, but little is known about how these mechanisms influence ecosystem processes. We used three elevation gradients and a reciprocal transplant experiment to show that temperature causes genetic change in the sedge Eriophorum vaginatum. We demonstrate that plants originating from warmer climate produce fewer secondary compounds, grow faster and accelerate carbon dioxide (CO2) release to the atmosphere. However, warmer climate also caused plasticity in E. vaginatum, inhibiting nitrogen metabolism, photosynthesis and growth and slowing CO2 release into the atmosphere. Genetic differentiation and plasticity in E. vaginatum thus had opposing effects on CO2 fluxes, suggesting that warming over many generations may buffer, or reverse, the short‐term influence of this species over carbon cycle processes. Our findings demonstrate the capacity for plant evolution to impact ecosystem processes, and reveal a further mechanism through which plants will shape ecosystem responses to climate change.  相似文献   

20.
Part of the missing sink in the global CO2 budget has been attributed to the positive effects of CO2 fertilization and N deposition on carbon sequestration in Northern Hemisphere terrestrial ecosystems. The genus Sphagnum is one of the most important groups of plant species sequestrating carbon in temperate and northern bog ecosystems, because of the low decomposability of the dead material it produces. The effects of raised CO2 and increased atmospheric N deposition on growth of Sphagnum and other plants were studied in bogs at four sites across Western Europe. Contrary to expectations, elevated CO2 did not significantly affect Sphagnum biomass growth. Increased N deposition reduced Sphagnum mass growth, because it increased the cover of vascular plants and the tall moss Polytrichum strictum. Such changes in plant species composition may decrease carbon sequestration in Sphagnum‐dominated bog ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号