首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4795篇
  免费   386篇
  国内免费   1篇
  2023年   30篇
  2022年   33篇
  2021年   155篇
  2020年   108篇
  2019年   145篇
  2018年   145篇
  2017年   143篇
  2016年   212篇
  2015年   312篇
  2014年   306篇
  2013年   366篇
  2012年   427篇
  2011年   428篇
  2010年   243篇
  2009年   228篇
  2008年   276篇
  2007年   286篇
  2006年   265篇
  2005年   229篇
  2004年   188篇
  2003年   167篇
  2002年   148篇
  2001年   38篇
  2000年   27篇
  1999年   37篇
  1998年   37篇
  1997年   7篇
  1996年   12篇
  1995年   7篇
  1994年   13篇
  1993年   6篇
  1992年   14篇
  1991年   17篇
  1990年   7篇
  1989年   10篇
  1988年   9篇
  1987年   8篇
  1986年   11篇
  1985年   6篇
  1984年   8篇
  1983年   3篇
  1982年   9篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1977年   4篇
  1975年   7篇
  1974年   6篇
  1971年   6篇
  1970年   3篇
排序方式: 共有5182条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
Citrus plants are able to produce defense compounds such as coumarins and furanocoumarins to cope with herbivorous insects and pathogens. In humans, these chemical compounds are strong photosensitizers and can interact with medications, leading to the “grapefruit juice effect”. Removing coumarins and furanocoumarins from food and cosmetics imply additional costs and might alter product quality. Thus, the selection of Citrus cultivars displaying low coumarin and furanocoumarin contents constitutes a valuable alternative. In this study, we performed ultra-performance liquid chromatography coupled with mass spectrometry analyses to determine the contents of these compounds within the peel and the pulp of 61 Citrus species representative of the genetic diversity all Citrus. Generally, Citrus peel contains larger diversity and higher concentrations of coumarin/furanocoumarin than the pulp of the same fruits. According to the chemotypes found in the peel, Citrus species can be separated into 4 groups that correspond to the 4 ancestral taxa (pummelos, mandarins, citrons and papedas) and extended with their respective secondary species descendants. Three of the 4 ancestral taxa (pummelos, citrons and papedas) synthesize high amounts of these compounds, whereas mandarins appear practically devoid of them. Additionally, all ancestral taxa and their hybrids are logically organized according to the coumarin and furanocoumarin pathways described in the literature. This organization allows hypotheses to be drawn regarding the biosynthetic origin of compounds for which the biogenesis remains unresolved. Determining coumarin and furanocoumarin contents is also helpful for hypothesizing the origin of Citrus species for which the phylogeny is presently not firmly established. Finally, this work also notes favorable hybridization schemes that will lead to low coumarin and furanocoumarin contents, and we propose to select mandarins and Ichang papeda as Citrus varieties for use in creating species devoid of these toxic compounds in future breeding programs.  相似文献   
5.
Pseudomonas aeruginosa UFPEDA 614 produced a rhamnolipid biosurfactant when grown on sugarcane bagasse impregnated with a solution containing glycerol. Biosurfactant levels reached 40 g of rhamnolipid per kilogram of dry initial substrate after 12 days. On the basis of the volume of liquid used, the biosurfactant levels were similar to those obtained in submerged liquid culture of a medium identical to the impregnating solution. The properties of the biosurfactant were very similar to those obtained with rhamnolipids produced in submerged culture, with a critical micelle concentration of 46.8 mg/L and an emulsification index at 24 h of over 90% against gasoline. The surface properties were maintained after autoclaving of the fermented solids, meaning that it is possible to minimize safety risks by killing the producing organism with a heat treatment of the solids prior to product extraction. The biosurfactant was used in the washing of soils contaminated with gasoline. An aqueous biosurfactant solution was 3.2-fold more efficient than water in leaching organic material from the soil, demonstrating the viability of application of rhamnolipids in the bioremediation of soils contaminated with gasoline.  相似文献   
6.
For diurnal nonhuman primates, shifting among different sleeping sites may provide multiple benefits such as better protection from predators, reduced risk of parasitic infection, and closer proximity to spatially and temporally heterogeneous food and water. This last benefit may be particularly important in sleeping site selection by primates living in savanna‐woodlands where rainfall is more limited and more seasonally pronounced than in rainforests. Here, we examined the influence of rainfall, a factor that affects food and water availability, on the use of sleeping sites by anubis baboons (Papio anubis) over two 13‐month study periods that differed in rainfall patterns. We predicted that during wet periods, when food and water availability should be higher, the study group would limit the number of sleeping sites and would stay at each one for more consecutive nights than during dry periods. Conversely, we predicted that during dry periods the group would increase the number of sleeping sites and stay at each one for fewer consecutive nights as they searched more widely for food and water. We also predicted that the group would more often choose sleeping sites closer to the center of the area used during daytime (between 07:00 and 19:00) during wet months than during dry months. Using Global Positioning System data from collared individuals, we found that our first prediction was not supported on either monthly or yearly timescales, although past monthly rainfall predicted the use of the main sleeping site in the second study period. Our second prediction was supported only on a yearly timescale. This study suggests that baboons’ choice of sleeping sites is fluid over time while being sensitive to local environmental conditions, one of which may be rainfall.  相似文献   
7.
Entry of anthrax edema factor (EF) and lethal factor (LF) into the cytosol of eukaryotic cells depends on their ability to translocate across the endosomal membrane in the presence of anthrax protective antigen (PA). Here we report attributes of the N-terminal domains of EF and LF (EF(N) and LF(N), respectively) that are critical for their initial interaction with PA. We found that deletion of the first 36 residues of LF(N) had no effect on its binding to PA or its ability to be translocated. To map the binding site for PA, we used the three-dimensional structure of LF and sequence similarity between EF and LF to select positions for mutagenesis. We identified seven sites in LF(N) (Asp-182, Asp-187, Leu-188, Tyr-223, His-229, Leu-235, and Tyr-236) where mutation to Ala produced significant binding defects, with H229A and Y236A almost completely eliminating binding. Homologous mutants of EF(N) displayed nearly identical defects. Cytotoxicity assays confirmed that the LF(N) mutations impact intoxication. The seven mutation-sensitive amino acids are clustered on the surface of LF and form a small convoluted patch with both hydrophobic and hydrophilic character. We propose that this patch constitutes the recognition site for PA.  相似文献   
8.
In this study we have measured, under experimental conditions which maintained efficient coupling, respiratory intensity, respiratory control, oxidative phosphorylation capacity and protonmotive force. Succinate cytochrome-c reductase and cytochrome-c oxidase activities were also studied. These investigations were carried out using kidney mitochondria from cyclosporine-treated rats (in vivo studies) and from untreated rats in the presence of cyclosporine (in vitro studies). Inhibition of respiratory intensity by cyclosporine did not exceed 21.1% in vitro and 15.9% in vivo. Since there was no in vitro inhibition of succinate cytochrome-c reductase and cytochrome-c oxidase activities, the slowing of electron flow observed can be interpreted as a consequence of an effect produced by cyclosporine between cytochromes b and c1. Cyclosporine had no effect on respiratory control either in vitro or in vivo. Statistically significant inhibition of the oxidative phosphorylation was observed both in vitro (6.6%) and in vivo (12.1%). Moreover, cyclosporine did not induce any change of membrane potential either in vivo or in vitro. Our findings show that cyclosporine is neither a protonophore, nor a potassium ionophore. In cyclosporine-treated rats we noticed a decrease of protein in subcellular fraction, including the mitochondrial fraction. The role of the inhibition respiratory characteristics by cyclosporine in nephrotoxicity in vivo must take account of these two parameters: inhibition of the respiratory characteristics measured in vitro and diminution of mitochondrial protein in cyclosporine-treated rats.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号