首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 730 毫秒
1.
Although the problem of plant invasions is expected to increase with climate change, there is as yet little experimental evidence, in particular, for the effects of extreme weather events. We established communities of European meadow species, which were subjected to warming and extreme event (drought and deluge) treatments in a factorial design at an experimental garden in Zurich, Switzerland. Phylogenetically matched pairs of native and alien species (Bromus erectus, B. inermis, Trifolium pratense, T. hybridum, Lactuca serriola, and Conyza canadensis) were introduced into the communities to test if invader performance is favored by warming and extreme events, and if alien invaders perform better than native colonizers. With a warming of on average 0.3?°C, a higher cover of native plant communities was observed, while drought decreased cover in the short-term and lowered biomass. Germination, survival, and growth of the introduced species were lower under elevated temperature. Survival of all pairs and growth of Trifolium was greater in drought pots, while deluge had no effect. While the alien species showed a faster rate of increase in the number of leaves, mortality of alien species was greater than of native species. Overall, the performance of the focal species varied much more among taxonomic groups than native/alien provenances. The results suggest that with climate change, different types of extreme events will differ in the severity of their effects on native plant communities. Meanwhile, the effects of climate change on plant invasions are more likely to operate indirectly through the impacts on native vegetation.  相似文献   

2.
Little is known about direct and indirect effects of extreme weather events on arbuscular mycorrhizal fungi (AMF) under field conditions. In a field experiment, we investigated the response of mycorrhization to drought and heavy rain in grassland communities. We quantified AMF biomass in soil, mycorrhization of roots of the grass Holcus lanatus and the forb Plantago lanceolata, as well as plant performance. Plants were grown in four‐species communities with or without a legume. We hypothesised that drought increases and heavy rain decreases mycorrhization, and that higher mycorrhization will be linked to improved stress resistance and higher biomass production. Soil AMF biomass increased under both weather extremes. Heavy rain generally benefitted plants and increased arbuscules in P. lanceolata. Drought neither reduced plant performance nor root mycorrhization. Arbuscules increased in H. lanatus several weeks after drought, and in P. lanceolata several weeks after heavy rain spells. These long‐lasting effects of weather events on mycorrhization highlight the indirect influence of climate on AMF via their host plant. Legume presence increased plant community biomass, but had only minor effects on mycorrhization. Arbuscule colonisation was negatively correlated with senescence during the dry summer. Mycorrhization and biomass production in P. lanceolata were positively related. However, increased mycorrhization was related to less biomass in the grass. AMF mycelium in soil might generally increase under extreme events, root colonisation, however, is host species specific. This might amplify community shifts in grassland under climate change by further increasing stress resistance of species that already benefit from changed precipitation.  相似文献   

3.
Understanding the resistance of plant communities to invasion is urgent in times of changes in the physical environment due to climate change and changes in the resident communities due to biodiversity loss. Here, we test the interaction between repeated drought or heavy rainfall events and functional diversity of grassland and heath communities on invasibility, measured as the number of plant individuals invading from the matrix vegetation. Invasibility of experimental plant communities was influenced by extreme weather events, although no change in above‐ground productivity of the resident communities was observed. Drought decreased invasibility while heavy rainfall increased invasibility, a pattern that is consistent with the fluctuating resource hypothesis. Higher community diversity generally decreased invasibility, which can be explained by a combination of the fluctuating resource hypothesis and niche theory. The effects of the physical environment (extreme weather events) and diversity resistance (community composition) were additive, as they were independent from each other. Differences in the composition of invading species sets were found, and Indicator Species Analysis revealed several invading species with significant affinity to one particular extreme weather event or community composition. This finding supports niche theory and contradicts neutral species assembly. Our data supports theories which predict decreased resistance of plant communities due to both increased climate variability and biodiversity loss. The effects of these two factors, however, appear to be independent from each other.  相似文献   

4.
  • Successful alien plant invasion is influenced by both climate change and plant–plant interactions. We estimate the single and interactive effects of competition and extreme weather events on the performance of the global legume invader Lupinus polyphyllus (Lindl.).
  • In three experimental studies we assessed (i) the stress tolerance of seedling and adult L. polyphyllus plants against extreme weather events (drought, fluctuating precipitation, late frost), (ii) the competitive effects of L. polyphyllus on native grassland species and vice versa, and (iii) the interactive effects of extreme weather events and competition on the performance of L. polyphyllus.
  • Drought reduced growth and led to early senescence of L. polyphyllus but did not reduce adult survival. Fluctuating precipitation events and late frost reduced the length of inflorescences. Under control conditions, interspecific competition reduced photosynthetic activity and growth of L. polyphyllus. When subjected to competition during drought, L. polyphyllus conserved water while simultaneously maintaining high assimilation rates, demonstrating increased water use efficiency. Meanwhile, native species had reduced performance under drought.
  • In summary, the invader gained an advantage under drought conditions through a smaller reduction in performance relative to its native competitors but was competitively inferior under control conditions. This provides evidence for a possible invasion window for this species. While regions of high elevation or latitude with regular severe late frost events might remain inaccessible for L. polyphyllus, further spread across Europe seems probable as the predicted increase in drought events may favour this non‐native legume over native species.
  相似文献   

5.
Extreme climatic events represent disturbances that change the availability of resources. We studied their effects on annual plant assemblages in a semi-arid ecosystem in north-central Chile. We analysed 130 years of precipitation data using generalised extreme-value distribution to determine extreme events, and multivariate techniques to analyse 20 years of plant cover data of 34 native and 11 exotic species. Extreme drought resets the dynamics of the system and renders it susceptible to invasion. On the other hand, by favouring native annuals, moderately wet events change species composition and allow the community to be resilient to extreme drought. The probability of extreme drought has doubled over the last 50 years. Therefore, investigations on the interaction of climate change and biological invasions are relevant to determine the potential for future effects on the dynamics of semi-arid annual plant communities.  相似文献   

6.
Extreme weather events are expected to increase in frequency and magnitude due to climate change. Their effects on vegetation are widely unknown. Here, experimental grassland and heath communities in Central Europe were exposed either to a simulated single drought or to a prolonged heavy rainfall event. The magnitude of manipulations imitated the local 100-year weather extreme according to extreme value statistics. Overall productivity of both plant communities remained stable in the face of drought and heavy rainfall, despite significant effects on tissue die-back. Grassland communities were more resistant against the extreme weather events than heath communities. Furthermore, effects of extreme weather events on community tissue die-back were modified by functional diversity, even though conclusiveness in this part is limited by the fact that only one species composition was available per diversity level within this case study. More diverse grassland communities exhibited less tissue die-back than less complex grassland communities. On the other side, more diverse heath communities were more vulnerable to extreme weather events compared to less complex heath communities. Furthermore, legumes did not effectively contribute to the buffering against extreme weather events in both vegetation types. Tissue die-back proved a strong stress response in plant communities exposed to 100-year extreme weather events, even though one important ecosystem function, namely productivity, remained surprisingly stable in this experiment. Theories and concepts on biodiversity and ecosystem functioning (insurance hypothesis, redundancy hypothesis) may have to be revisited when extreme weather conditions are considered.  相似文献   

7.
Climate-change induced shifts in species’ temporal and geographic niches have been well documented, while plastic and genetic responses to climatic change have received much less attention. Plastic responses to changes in temperature are generally well understood, though most experimental studies to date have used constant temperature regimes, the reliability of which is under debate. We here investigate plastic responses in the widespread butterfly Pieris napi to simulated climate change, using ecologically realistic diurnal temperature cycles and current and predicted temperature regimes including effects of a heat wave. Increasing the temperature mean by 3 °C predominantly affected developmental times, cold resistance and adult life span, while an increase in the diurnal temperature amplitude had very little effects. Immune function responded only weakly to different thermal regimes. The simulation of a prolonged heat wave severely impaired juvenile survival, body size and longevity, supporting the wide-held notion that extreme weather events will be much more important for species’ performance and local survival than moderate increases in temperature means. Given that the frequency of extreme weather events is predicted to increase with climate change, even widespread species may be negatively affected.  相似文献   

8.
The influence of weather on wildlife populations has been documented for many species; however, much of the current literature has focused on the effects of weather within a season and consists of short-term studies. The use of long-term datasets that cover a variety of environmental conditions will be essential for assessing possible carry-over effects of weather experienced in one season on behavior and fitness in subsequent seasons. In this study, we evaluated the effects of weather variables measured over multiple temporal scales on the reproductive performance and behavior of greater prairie-chickens (Tympanuchus cupido) in Osage County, Oklahoma, USA, from 2011–2019. Considering weather over a range of temporal extents allowed us to determine the relative importance of short-term weather events, such as daily temperature and precipitation, versus more chronic shifts in weather such as persistent drought on the reproductive performance of greater prairie-chickens. We used an information-theoretic model building approach to develop models describing the effects of daily weather variables and drought conditions on daily nest survival, nest incubation start dates, and clutch size. Daily nest survival was primarily influenced by conditions experienced during incubation with daily nest success declining in years with wetter than average springs and during extreme precipitation events. Daily nest survival also declined under higher maximum daily temperatures, especially in years with below-average rainfall. Greater prairie-chickens began nesting earlier and had smaller clutch sizes for initial nests and renests in years with warmer temperatures prior to the nesting season. Additionally, incubation of nests started later in drought years, indicating carry-over effects in greater prairie-chicken reproductive behaviors. Our work shows that if the weather in the Great Plains becomes more variable, with increasing frequency of drought and extreme precipitation events, wildlife species that inhabit these grassland landscapes will likely experience changes in reproduction, potentially influencing future populations. © 2020 The Wildlife Society.  相似文献   

9.
  1. Global climate change affects the frequency of extreme weather events that can influence plant–insect interactions.
  2. We evaluated how the late-spring frost and severe drought that occurred in Spain in 2017 affected interactions between the invasive gall insect, Dryocosmus kuriphilus, and the native tree, Castanea sativa. We assessed effects on insect survival, fertility, population growth, and effects through changes in tree palatability and in other pests and pathogens.
  3. Late-spring frost reduced D. kuriphilus to 25–40% of previous abundance. Wasp populations recovered rapidly (>7-fold in 3 years), consistent with density-dependence in population dynamics.
  4. Larvae affected by freeze or drought were smaller. Female fecundity was affected by the freeze 1 year later.
  5. Late-spring frosts and severe drought affected leaf size and physiology. Water content was higher within galls, but nitrogen was higher within galls in non-freeze plots after weather conditions improved.
  6. Freezing also influenced the secondary chemistry of leaves. Phenol concentrations were lower, and terpenes higher, in frozen plots, while condensed tannins remained the same. Condensed tannins were reduced to half in the drought year.
  7. Freezing had limited effects on damage from other pests and pathogens.
  8. Our work expands understanding of how climate and weather affects forest pests.
  相似文献   

10.
A chance observation of a drought‐related plant mortality event in early 2014 in a normally wet and cool alpine area was matched with local weather data providing a unique insight into this event. The observed plant death was largely indiscriminate in areas that were topographically predisposed to being susceptible to drought. The weather conditions surrounding this event included 5 weeks with very little rain, an extreme heatwave and subsequent brief periods where warm temperatures and dry air combined to produce highly evaporative conditions. Extreme weather conditions such as this are expected to occur with increasing frequency as a result of climate change. Observing and reporting on real‐world examples of how extreme weather events affect native vegetation is integral to improved climate change risk assessment and to inform future management actions.  相似文献   

11.
Biotic interactions play an important role in ecosystem function and structure in the face of global climate change. We tested how plant–plant interactions, namely competition and facilitation among grassland species, respond to extreme drought and heavy rainfall events. We also examined how the functional composition (grasses, forbs, legumes) of grassland communities influenced the competition intensity for grass species when facing extreme events. We exposed experimental grassland communities of different functional compositions to either an extreme single drought event or to a prolonged heavy rainfall event. Relative neighbour effect, relative crowding and interaction strength were calculated for five widespread European grassland species to quantify competition. Single climatic extremes caused species specific shifts in plant–plant interactions from facilitation to competition or vice versa but the nature of the shifts varied depending on the community composition. Facilitation by neighbouring plants was observed for Arrhenatherum elatius when subjected to drought. Contrarily, the facilitative effect of neighbours on Lotus corniculatus was transformed into competition. Heavy rainfall increased the competitive effect of neighbours on Holcus lanatus and Lotus corniculatus in communities composed of three functional groups. Competitive pressure on Geranium pratense and Plantago lanceolata was not affected by extreme weather events. Neither heavy rainfall nor extreme drought altered the overall productivity of the grassland communities. The complementary responses in competition intensity experienced by grassland species under drought suggest biotic interactions as one stabilizing mechanism for overall community performance. Understanding competitive dynamics under fluctuating resources is important for assessing plant community shifts and degree of stability of ecosystem functions.  相似文献   

12.
Matías L  Zamora R  Castro J 《Oecologia》2012,169(3):833-844
The understanding of the impact of extreme climatic events under a global climate change scenario is crucial for the accurate forecast of future plant community dynamics. We have experimentally assessed the effect of drier and wetter summer conditions on the recruitment probabilities and the growth of seedlings from eight woody species representative of the most important functional groups in the community, pioneer shrubs, mid-successional shrubs and trees, across the main habitats in the study area (open habitat, shrubland, and forest). Our hypothesis proposes that wet summer conditions would represent a good opportunity for tree species regeneration, enhancing both forest maintenance and expansion. A drier summer scenario, on the other hand, would limit forest regeneration, and probably hinder the colonization of nearby habitats. We found a habitat effect on the emergence, survival, and final biomass, whereas different climate scenarios affected seedling survival and biomass. A wet summer boosted growth and survival, whereas greater drought reduced survival only in some cases. These results were modulated by the habitat type. Overall, shrub species presented higher survival and growth and were less affected by more severe drought, whereas some tree species proved to be extremely dependent on wet summer conditions. We conclude that the reduction in frequency of wet summers predicted for the coming decades in Mediterranean areas will have greater consequences for species recruitment than will increased drought. The different response of the species from the various functional groups has the potential to alter the composition and dominance of future plant communities.  相似文献   

13.
Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought-induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade of downstream effects such as reduced resistance to biotic agents. Mortality by hydraulic failure per se may occur for isohydric seedlings or trees near their maximum height. Although anisohydric plants are relatively drought-tolerant, they are predisposed to hydraulic failure because they operate with narrower hydraulic safety margins during drought. Elevated temperatures should exacerbate carbon starvation and hydraulic failure. Biotic agents may amplify and be amplified by drought-induced plant stress. Wet multidecadal climate oscillations may increase plant susceptibility to drought-induced mortality by stimulating shifts in hydraulic architecture, effectively predisposing plants to water stress. Climate warming and increased frequency of extreme events will probably cause increased regional mortality episodes. Isohydric and anisohydric water potential regulation may partition species between survival and mortality, and, as such, incorporating this hydraulic framework may be effective for modeling plant survival and mortality under future climate conditions.  相似文献   

14.
本地木本豆科植物比外来入侵木本豆科植物对极端干旱事件的负面响应更强 植物入侵可能会受到极端干旱事件增加和大气氮沉降的影响。然而,极端干旱、氮沉降及其相互作用如何影响外来木本豆科植物的成功入侵尚不清楚。本研究选取3种入侵木本豆科植物和3种本地木本豆科植物,开展温室控制实验。分别将这些植物种植在不同干旱处理(极端干旱和对照)和不同氮水平(低氮和高氮)下,然后对比分析两类植物的株高、叶片数、生物量以及根质量分数的差异。研究结果表明,极端干旱对本地木本豆科植物生长的抑制效应强于入侵木本豆科植物。尽管土壤氮素有效性的增加降低了植物的根质量分数,但这并不影响植物的整体表现。入侵木本豆科植物比本地木本豆科植物更能耐受长期极端干旱的负面效应。本研究加深了我们对气候变化导致的干旱事件如何影响外来木本豆科植物入侵的了解。  相似文献   

15.
Macroclimatic niche properties derived from species distribution ranges are fundamental for projections of climate change impacts on biodiversity. However, it has been recognized that changes in regional or local distribution patterns also depend on interactions with land use. The reliability and transferability of large scale geographic predictions to small scale plant performance need to be tested experimentally. Thus, we asked how grassland plant species pairs with different macroclimatic niche properties respond to increased spring temperature and decrease summer precipitation in three different land‐use types. An experiment was carried out in the framework of the German Biodiversity Exploratories simulating climate change in 45 experimental plots in three geographical regions (Schorfheide‐Chorin, Hainich‐Dün, Schwäbische Alb) and three grassland management types (meadow, pasture, mown pasture). We planted six plant species as phytometers, each two of them representing congeneric species with contrasting macroclimatic niches and recorded plant survival and growth over 1 year. To quantify the species macroclimatic niches with respect to drought tolerance, the species’ distribution ranges were mapped and combined with global climate data. The simulated climate change had a general negative effect on plant survival and plant growth, irrespective of the macroclimatic niche characteristics of the species. Against expectation, species with ranges extending into drier regions did not generally perform better under drier conditions. Growth performance and survival was best in mown pastures, representing a quite intensive type of land use in all study regions. Species with higher macroclimatic drought tolerance were generally characterized by lower growth rates and higher survival rates in land‐use types with regular mowing regimes, probably because of reduced competition in the growing season. In conclusion, plant species with similar climatic niche characteristics cannot be expected to respond consistently over different regions owing to complex interactions of climate change with land use practices.  相似文献   

16.
Water availability is one of the key environmental factors that affect plant establishment and distribution. In many regions water availability will decline with climate change, exposing small seedlings to a greater likelihood of drought. In this study, 17 leaves, stem, root, and whole-plant traits of ten woody Mediterranean species were measured under favourable growing conditions and seedling drought survival was evaluated during a simulated dry-down episode. The aims of this study were: i) to assess drought survival of different species, ii) to analyse which functional traits predict drought survival time, and iii) to explain species distribution in the field, based on species drought survival and drought strategies. Drought survival time varied ten-fold across species, from 19 to 192 days. Across species, drought survival was positively related to the rooting depth per leaf area, i.e., the ability to acquire water from deeper soil layers while reducing transpiring leaf area. Drought survival time was negatively related to species ability to grow quickly, as indicated by high relative growth and net assimilation rates. Drought survival also explained species distribution in the field. It was found that species were sorted along a continuum, ranging between two contrasting species functional extremes based on functional traits and drought performance. One extreme consisted of acquisitive fast-growing deciduous species, with thin, soft metabolically active leaves, with high resource use and vulnerability to drought. The opposite extreme consisted of conservative slow-growing evergreen species with sclerophyllous leaves, deep roots, a low transpiring area, and low water use, resulting in high drought survival and drought tolerance. The results show that these drought strategies shape species distribution in this Mediterranean area.  相似文献   

17.
Climate change may reduce forest growth and increase forest mortality, which is connected to high carbon costs through reductions in gross primary production and net ecosystem exchange. Yet, the spatiotemporal patterns of vulnerability to both short‐term extreme events and gradual environmental changes are quite uncertain across the species’ limits of tolerance to dryness. Such information is fundamental for defining ecologically relevant upper limits of species tolerance to drought and, hence, to predict the risk of increased forest mortality and shifts in species composition. We investigate here to what extent the impact of short‐ and long‐term environmental changes determines vulnerability to climate change of three evergreen conifers (Scots pine, silver fir, Norway spruce) and two deciduous hardwoods (European beech, sessile oak) tree species at their southernmost limits of distribution in the Mediterranean Basin. Finally, we simulated future forest growth under RCP 2.6 and 8.5 emission scenarios using a multispecies generalized linear mixed model. Our analysis provides four key insights into the patterns of species’ vulnerability to climate change. First, site climatic marginality was significantly linked to the growth trends: increasing growth was related to less climatically limited sites. Second, estimated species‐specific vulnerability did not match their a priori rank in drought tolerance: Scots pine and beech seem to be the most vulnerable species among those studied despite their contrasting physiologies. Third, adaptation to site conditions prevails over species‐specific determinism in forest response to climate change. And fourth, regional differences in forests vulnerability to climate change across the Mediterranean Basin are linked to the influence of summer atmospheric circulation patterns, which are not correctly represented in global climate models. Thus, projections of forest performance should reconsider the traditional classification of tree species in functional types and critically evaluate the fine‐scale limitations of the climate data generated by global climate models.  相似文献   

18.
Climate change is increasing global temperatures, severe rainfall events, and the occurrence and severity of drought. Changes in global climate may have negative consequences for particular plant species and for biodiversity overall. In the short term, altered temperature and precipitation regimes may have the most severe effects on plant species near their range limits and in the earliest stages of plant development. To address these issues, we assessed seedling emergence, early survival, and growth of 18 boreal, temperate, and exotic woody species at the boreal–temperate forest ecotone in central Minnesota. We experimentally warmed forest plots to mimic projected warming by the end of the twenty-first century (+ 1.7 °C and + 3.4 °C). We also experimentally removed summer rainfall (~?42% reduction) to simulate drought conditions in this region. We found that emergence and survival of boreal and exotic species was lower in experimentally warmed plots. This was exacerbated by drought. Temperate species emergence and survival was largely unaffected by climate manipulations (on average). Conversely, temperate seedling growth was greater in warmer conditions, but only when paired with drought. We found that overall seedling species richness was reduced by warming, mostly due to lower boreal and exotic species emergence and survival (conifers were also strongly negatively affected across species-range groups). If temperate seedling emergence and survival does not compensate for loss of boreal species, these forests may experience loss of biodiversity (and associated ecosystem functions) in the future.  相似文献   

19.
The gradual increase in temperature over the last few decades is one of the major consequences of global change. It is also projected that drought frequency and intensity in the Mediterranean region will increase, promoting changes in plant responses to environmental conditions and ultimately species distribution. Studying past growth trends can help understand future impacts of climate change on species-function and predict alterations in how species are distributed. This study sought to evaluate growth trends in riparian tree species to assess both their resistance and resilience responses to, and their complementary strategies in the face of, climatic and hydrological changes. Their supporting ecosystem role in riverine ecosystems and their representativeness in the study region led to the selection of the species Alnus glutinosa (L.) Gaertn. and Fraxinus angustifolia Vahl for this purpose.Yearly growth curves were obtained for coexisting A. glutinosa and F. angustifolia, sampled in 2009 in a riparian forest in a Southern Portuguese river basin. Standardized Precipitation Evapotranspiration Index (SPEI) was calculated to select drought events, identified as years of extreme and severe drought combined with adverse river discharge conditions. Temporal trends in Basal Area Increments (BAI) were explored for both species across 1970–2009, particularly during drought years. Tree growth response was associated with long-term SPEI, minimum temperature, rainfall and discharge.Both species presented an increase in BAI until the 1980s, apparently triggered by the rise in minimum temperatures, which lengthened the growing season. However, after the 80′s this trend in tree growth has been reversed due to the reduced precipitation associated with increased drought intensity. Similar tree growth responses to drought were observed in both species, but responses to extreme drought events were species-specific. Distinct long-term resilience trends between species suggest that under the current climate change scenario, mesic species (e.g. A. glutinosa) will gradually be replaced by more drought-tolerant species, such as F. angustifolia.Finally, further research should be undertaken to provide information on physiological and anatomical changes of riparian tree species in the Mediterranean region.  相似文献   

20.
Plant–pollinator interactions are essential for the functioning of terrestrial ecosystems, but are increasingly affected by global change. The risks to such mutualistic interactions from increasing temperature and more frequent extreme climatic events such as drought or advanced snow melt are assumed to depend on network specialization, species richness, local climate and associated parameters such as the amplitude of extreme events. Even though elevational gradients provide valuable model systems for climate change and are accompanied by changes in species richness, responses of plant–pollinator networks to climatic extreme events under different environmental and biotic conditions are currently unknown. Here, we show that elevational climatic gradients, species richness and experimentally simulated extreme events interactively change the structure of mutualistic networks in alpine grasslands. We found that the degree of specialization in plant–pollinator networks (H2′) decreased with elevation. Nonetheless, network specialization increased after advanced snow melt at high elevations, whereas changes in network specialization after drought were most pronounced at sites with low species richness. Thus, changes in network specialization after extreme climatic events depended on climatic context and were buffered by high species richness. In our experiment, only generalized plant–pollinator networks changed in their degree of specialization after climatic extreme events. This indicates that contrary to our assumptions, network generalization may not always foster stability of mutualistic interaction networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号