首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Although rRNA synthesis, maturation, and assembly into preribosomal particles occur within the nucleolus, the route taken by pre-rRNAs from their synthetic sites toward the cytoplasm remains largely unexplored. Here, we employed a nondestructive method for the incorporation of BrUTP into the RNA of living cells. By using pulse-chase experiments, three-dimensional image reconstructions of confocal optical sections, and electron microscopy analysis of ultrathin sections, we were able to describe topological and spatial dynamics of rRNAs within the nucleolus. We identified the precise location and the volumic organization of four typical subdomains, in which rRNAs are successively moving towards the nucleolar periphery during their synthesis and processing steps. The incorporation of BrUTP takes place simultaneously within several tiny spheres, centered on the fibrillar centers. Then, the structures containing the newly synthesized RNAs enlarge and appear as compact ringlets disposed around the fibrillar centers. Later, they form hollow spheres surrounding the latter components and begin to fuse together. Finally, these structures widen and form large rings reaching the limits of the nucleoli. These results clearly show that the transport of pre-rRNAs within the nucleolus does not occur randomly, but appears as a radial flow starting from the fibrillar centers that form concentric rings, which finally fuse together as they progress toward the nucleolar periphery.  相似文献   

6.
Retention of some components within the nucleolus correlates with the presence of rRNA precursors found early in the rRNA processing pathway. Specifically, after most 40S, 38S and 36S pre-rRNAs have been depleted by incubation of Xenopus kidney cells in 0.05 μg/ml actinomycin D for 4 h, only 69% U3 small nucleolar RNA (snoRNA), 68% U14 snoRNA and 72% fibrillarin are retained in the nucleolus as compared with control cells. These nucleolar components are important for processing steps in the pathway that gives rise to 18S rRNA. In contrast, U8 snoRNA, which is used for 5.8S and 28S rRNA production, is fully retained in the nucleolus after actinomycin D treatment. Therefore, U8 snoRNA is in a different category than U3 and U14 snoRNA and fibrillarin. It is proposed that U3 and U14 snoRNA and fibrillarin, but not U8 snoRNA, bind to the external transcribed spacer or internal transcribed spacer 1, and when these binding sites are lost after actinomycin D treatment some of these components cannot be retained in the nucleolus. Other binding sites may also exist, which would explain why only some and not all of these components are lost from the nucleolus. Received: 16 September 1996; in revised form: 21 November 1996 / Accepted: 28 November 1996  相似文献   

7.
The nucleolus, the site of pre-ribosomal RNA (pre-rRNA) synthesis and processing in eukaryotic cells, contains a number of small nucleolar RNAs (snoRNAs). Yeast U3 snoRNA is required for the processing of 18S rRNA from larger precursors and contains a region complementary to the pre-rRNA. Substitution mutations in the pre-rRNA which disrupt this base pairing potential are lethal and prevent synthesis of 18S rRNA. These mutant pre-rRNAs show defects in processing which closely resemble the effects of genetic depletion of components of the U3 snoRNP. Co-expression of U3 snoRNAs which carry compensatory mutations allows the mutant pre-rRNAs to support viability and synthesize 18S rRNA at high levels. Pre-rRNA processing steps which are blocked by the external transcribed spacer region mutations are largely restored by expression of the compensatory U3 mutants. Pre-rRNA processing therefore requires direct base pairing between snoRNA and the substrate. Base pairing with the substrate is thus a common feature of small RNAs involved in mRNA and rRNA maturation.  相似文献   

8.
By means of immunocytochemistry performed on cryosections of cultured cells, RNA polymerase I was localized mainly to nucleolar fibrillar centers. The labelling of nucleolar dense fibrillar components was low and depended on the cell type. In contrast, DNA topoisomerase I and RNP complexes containing U3 snRNA were enriched in dense fibrillar components, their occurrence in fibrillar centers being usually much less.  相似文献   

9.
10.
11.
Degradation of ribosomal RNA precursors by the exosome   总被引:18,自引:6,他引:12       下载免费PDF全文
The yeast exosome is a complex of 3′→5′ exonucleases involved in RNA processing and degradation. All 11 known components of the exosome are required during 3′ end processing of the 5.8S rRNA. Here we report that depletion of each of the individual components inhibits the early pre-rRNA cleavages at sites A0, A1, A2 and A3, reducing the levels of the 32S, 20S, 27SA2 and 27SA3 pre-rRNAs. The levels of the 27SB pre-rRNAs were also reduced. Consequently, both the 18S and 25S rRNAs were depleted. Since none of these processing steps involves 3′→5′ exonuclease activities, the requirement for the exosome is probably indirect. Correct assembly of trans-acting factors with the pre-ribosomes may be monitored by a quality control system that inhibits pre-rRNA processing. The exosome itself degrades aberrant pre-rRNAs that arise from such inhibition. Exosome mutants stabilize truncated versions of the 23S, 21S and A2-C2 RNAs, none of which are observed in wild-type cells. The putative helicase Dob1p, which functions as a cofactor for the exosome in pre-rRNA processing, also functions in these pre-rRNA degradation activities.  相似文献   

12.
13.
Previous work from our lab suggests that a group of interdependent assembly factors (A3 factors) is necessary to create early, stable preribosomes. Many of these proteins bind at or near internal transcribed spacer 2 (ITS2), but in their absence, ITS1 is not removed from rRNA, suggesting long-range communication between these two spacers. By comparing the nonessential assembly factors Nop12 and Pwp1, we show that misfolding of rRNA is sufficient to perturb early steps of biogenesis, but it is the lack of A3 factors that results in turnover of early preribosomes. Deletion of NOP12 significantly inhibits 27SA3 pre-rRNA processing, even though the A3 factors are present in preribosomes. Furthermore, pre-rRNAs are stable, indicating that the block in processing is not sufficient to trigger turnover. This is in contrast to the absence of Pwp1, in which the A3 factors are not present and pre-rRNAs are unstable. In vivo RNA structure probing revealed that the pre-rRNA processing defects are due to misfolding of 5.8S rRNA. In the absence of Nop12 and Pwp1, rRNA helix 5 is not stably formed. Interestingly, the absence of Nop12 results in the formation of an alternative yet unproductive helix 5 when cells are grown at low temperatures.  相似文献   

14.
The ultrastructure of nucleoli was examined in developing rat spermatocytes and spermatids, with the help of serial sections. In addition, the radioautographic reaction of nucleoli as examined in rats sacrificed 1 hr after intratesticular injection of 3H(5')-uridine and taken as an index of the rate of synthesis of ribosomal RNA (rRNA). Primary spermatocytes from preleptotene to zygotene have small nucleoli typically composed of fibrillar centers, a fibrillar component, and a granular component, within which are narrow interstitial spaces. During early and mid-pachytene, nucleoli enlarge to about nine times their initial size, with the fibrillar and granular components forming an extensive network of cords--a nucleolonema--within which are wide interstitial spaces. Meanwhile, there appear structures identical to the granular component but distinct from nucleoli; they are referred to as extranucleolar granular elements. Finally, from late pachytene to the first maturation division, nucleoli undergo condensation, as shown by contraction of fibrillar centers into small clumps, while fibrillar and granular components condense and segregate from each other, with a gradual decrease in interstitial spaces. In secondary spermatocytes, nucleoli are compact and rather small, while in young spermatids they are also compact and even smaller. Nucleoli disappear in elongating spermatids. In 3H-uridine radioautographs, nucleolar label is weak in young primary spermatocytes, increases progressively during early pachytene, is strong by the end of mid pachytene, but gradually decreases during late pachytene up to the first maturation division. In secondary spermatocytes and spermatids, there is no significant nucleolar label. In conclusion, rRNA synthesis by nucleoli is low in young spermatocytes. During pachytene, while nucleoli enlarge and form a lacy nucleolonema, rRNA synthesis increases gradually to a high level by the end of mid pachytene. However, during the condensation and segregation of nucleolar components occurring from late pachytene onward, the synthesis gradually decreases and disappears. The small, compact spermatids arising from the second maturation division do not synthesize rRNA.  相似文献   

15.
Ag staining was applied on interphasic nucleoli of Zea mays root cells 120h after germination. We applied the two-step Ag-NOR staining technique to small root fragments and the one-step technique to sections of Lowicryl-embedded tissue. The small-sized silver grains were mainly located in the dense fibrillar component (DFC). The unstained fibrillar centers (FCs) differed in their proteinic contents from the NOR (which is positively silver stained) and were not the interphasic NOR counterpart.  相似文献   

16.
17.
Exoribonucleases function in the processing and degradation of a variety of RNAs in all organisms. These enzymes play a particularly important role in the maturation of rRNAs and in a quality-control pathway that degrades rRNA precursors upon inhibition of ribosome biogenesis. Strains with defects in 3'-5' exoribonucleolytic components of the RNA processing exosome accumulate polyadenylated precursor rRNAs that also arise in strains with ribosome biogenesis defects. These findings suggested that polyadenylation might target pre-rRNAs for degradation by the exosome. Here we report experiments that indicate a role for the 5'-3' exoribonuclease Rat1p and its associated protein Rai1p in the degradation of poly(A)(+) pre-rRNAs. Depletion of Rat1p enhances the amount of poly(A)(+) pre-rRNA that accumulates in strains deleted for the exosome subunit Rrp6p and decreases their 5' heterogeneity. Deletion of RAI1 results in the accumulation of poly(A)(+) pre-rRNAs, and inhibits Rat1p-dependent 5'-end processing and Rrp6p-dependent 3'-end processing of 5.8S rRNA. RAT1 and RAI1 mutations cause synergistic growth defects in the presence of rrp6-Delta, consistent with the interdependence of 5'-end and 3'-end processing pathways. These findings suggest that Rai1p may coordinate the 5'-end and 3'-end processing and degradation activities of Rat1p and the nuclear exosome.  相似文献   

18.
The performance of two up-flow anaerobic packed bed systems (UAPB) to treat acid mine drainage (AMD) from the Portuguese mines São Domingos and Tinoca was investigated. The response of bacterial populations to influent characteristics was also analysed by temperature gradient gel electrophoresis (TGGE). Effective neutralisation (pH raised from 2.8 to 6.5) and removal of metals (>99%) and sulphate (>72%) were observed independently of the AMD source. TGGE fingerprinting and phylogenetic analysis of 16S rRNA gene revealed that the structure of the bacterial consortia developed in each bioreactor was different. The main bacterial groups involved in the treatment of AMD from Tinoca mine were Desulfovibrio sp., Clostridium sp., Desulfitobacterium sp. and members of Bacteroidales order. These bacterial groups were also present in the community developed in the UAPB fed with AMD from São Domingos mine but an unidentified bacterium and bacteria affiliated to Citrobacter and Cronobacter genera were detected only in this last system. The results of present study showed that the AMD source fed to the system was determinant for the establishment of different bacterial populations. Furthermore, the potential of the bioremediation systems for the production of water for irrigation purposes was demonstrated.  相似文献   

19.
20.
The effectiveness of a passive flow sulfate-reducing bioreactor processing acid mine drainage (AMD) generated from an abandoned coal mine in Southern Illinois was evaluated using geochemical and microbial community analysis 10 months post bioreactor construction. The results indicated that the treatment system was successful in both raising the pH of the AMD from 3.09 to 6.56 and in lowering the total iron level by 95.9%. While sulfate levels did decrease by 67.4%, the level post treatment (1153 mg/l) remained above recommended drinking water levels. Stimulation of biological sulfate reduction was indicated by a +2.60‰ increase in δ34S content of the remaining sulfate in the water post-treatment. Bacterial community analysis targeting 16S rRNA and dsrAB genes indicated that the pre-treated samples were dominated by bacteria related to iron-oxidizing Betaproteobacteria, while the post-treated water directly from the reactor outflow was dominated by sequences related to sulfur-oxidizing Epsilonproteobacteria and complex carbon degrading Bacteroidetes and Firmicutes phylums. Analysis of the post-treated water, prior to environmental release, revealed that the community shifted back to predominantly iron-oxidizing Betaproteobacteria. DsrA analysis implied limited diversity in the sulfate-reducing population present in both the bioreactor outflow and oxidation pond samples. These results support the use of passive flow bioreactors to lower the acidity, metal, and sulfate levels present in the AMD at the Tab-Simco mine, but suggest modifications of the system are necessary to both stimulate sulfate-reducing bacteria and inhibit sulfur-oxidizing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号