首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we have examined the effects of denuded oocyte coculture with dissociated cumulus cells (CC) or intact oocyte-CC complexes on meiotic resumption. When denuded oocytes (DO) or cumulus cell-enclosed oocytes (CEO) were cultured in 40-microl drops of medium under oil, and held in meiotic arrest with 4 mM hypoxanthine plus 25 microM dbcAMP, they underwent germinal vesicle breakdown (GVB) at similar frequencies (34%-35%). Coculture of DO with complexes or dissociated CCs stimulated maturation (50% and 61% GVB, respectively), with no effect of DO on maturation of cocultured CEO (32% GVB). This coculture effect was increased with the number of CCs added to the culture drop. When either glucose or glutamine was eliminated from the medium, no meiotic induction resulted from cocultured CCs. When CEO were cultured alone in microdrops, increasing their number from 10 to 50 significantly lowered the percentage resuming maturation, an effect also reduced by removing glucose and/or glutamine from the medium. This effect was not observed with DO. When inhibitory medium was conditioned overnight with complexes, subsequent culture with DO led to higher maturation percentages than culture in unconditioned medium; however, when CEO were cultured in conditioned medium, there was either no effect or increased inhibition of maturation. Assay of glucose and pyruvate in spent medium showed that DO cultured alone consumed glucose and pyruvate, but under CC coculture conditions more glucose was consumed and significant amounts of pyruvate accumulated in the medium, changes that led to an increase in the maturation of DO. Further experiments showed that DO were more sensitive than CEO to the meiosis-inducing effect of pyruvate. These results demonstrate different responsiveness of DO and CEO to coculture conditions and question the physiological relevance of denuded oocyte/CC coculture to study meiotic induction.  相似文献   

2.
This study was carried out to examine the effects of the meiosis-activating C(29) sterol, 4,4-dimethyl-5 alpha-cholesta-8,14, 24-trien-3 beta-ol (FF-MAS), on mouse oocyte maturation in vitro. Cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) from hormonally primed, immature mice were cultured 17-18 h in minimum essential medium (MEM) containing 4 mM hypoxanthine plus increasing concentrations of FF-MAS. The sterol induced maturation in DO with an optimal concentration of 3 microg/ml but was without effect in CEO, even at concentrations as high as 10 microg/ml. Some stimulation of maturation in hypoxanthine-arrested CEO was observed when MEM was replaced by MEMalpha. Interestingly, the sterol suppressed the maturation of hypoxanthine-arrested CEO in MEM upon removal of glucose from the medium. FF-MAS also failed to induce maturation in DO when meiotic arrest was maintained with dibutyryl cAMP (dbcAMP). The rate of maturation in FF-MAS-stimulated, hypoxanthine-arrested DO was slow, as more than 6 h of culture elapsed before significant meiotic induction was observed, and this response required the continued presence of the sterol. Although the oocyte took up radiolabeled lanosterol, such accumulation was restricted by the presence of cumulus cells. In addition, lanosterol failed to augment FSH-induced maturation and was even inhibitory at a high concentration. Moreover, the downstream metabolite, cholesterol, augmented the inhibitory action of dbcAMP on maturation in both CEO and DO. Two inhibitors of 14 alpha-demethylase, ketoconazole, and 14 alpha-ethyl-5 alpha-cholest-7-ene-3 beta, 15 alpha-diol that can suppress FF-MAS production from lanosterol failed to block consistently FSH-induced maturation. These results confirm the stimulatory action of FF-MAS on hypoxanthine-arrested DO but do not support a universal meiosis-inducing function for this sterol.  相似文献   

3.
The role of the cumulus cells in initiating the resumption of meiosis after exposure to forskolin and dbcAMP was studied in the mouse. The resumption of meiosis was monitored by the percentage of germinal vesicle breakdown (GVBD) and polar body formation (PB). The cumulus-enclosed oocytes (CEO) and denuded oocytes (DO) were cultured with and without hypoxanthine (HX) in the culture medium. Three types of experiments were performed: (1) Effect of forskolin on spontaneous resumption of meiosis, i.e. cultures without HX, and two experiments in which HX is present throughout the culture: (2) Effect of transient exposure to forskolin or dibutyric-cyclic adenosinemonophosphate (dbcAMP) on GVBD prior to continued culture without forskolin or dbcAMP (oocyte priming). (3) Priming of CEO with forskolin for 2 hr, separation of cumulus cells and oocytes, followed by coculture of rejoined cumulus cells and oocytes, or coculture of the cumulus cells and new, unprimed DO. (1) Forskolin inhibited a spontaneous resumption of meiosis in a dose-dependent manner during the first 5 hr of culturing. After 22 hr all controls and CEO resumed meiosis, whereas only half of the DO did. (2) At least 1 hr of priming the CEO with forskolin is needed to induce GVBD and PB formation, but forskolin inhibited the resumption of meiosis when present for 24 hr. Similar results were obtained with a high concentration of dbcAMP. (3) A separation and rejoining of oocytes and cumulus cells after priming induced the resumption of meiosis in a significantly greater number of oocytes than in the control oocytes which were not primed. The GVBD of unstimulated DO also increased significantly when cocultured with cumulus cells from primed CEO. The percentage of GVBD in unprimed DO and in DO isolated from primed CEO was the same. We suggest that within 1–2 hr, forskolin and cAMP stimulate cumulus cells to produce a diffusible meiosis-inducing substance which overcomes HX-inhibition and induces oocyte maturation, including both GVBD and PB formation. The CEO must be primed for more than 2 hr before the resumption of meiosis in DO isolated from such CEO is induced. Oocyte-cumulus connections are crucial as far as initiating the production of a meiosis-inducing substance is concerned. Oocyte-cumulus connections are not needed for transferring this substance to the oocyte. © 1994 Wiley-Liss, Inc.  相似文献   

4.
研究促卵泡激素(FSH),人绒毛膜促性腺激素(hCG)对昆明白小鼠卵母细胞成熟和卵丘扩展的影响,以及体外培养时卵丘扩展与卵母细胞成熟之间的关系,FSH可以明显促进次黄嘌吟(HX)抑制条件下的卵丘-卵母细胞复合体CEO卵母细胞成熟及卵丘扩展,其最佳作用剂量为100IU/L,且FSH作用30分钟即可以使CEO获得恢复减数分裂的信息,在HX存在的条件下,FSH处理后10hr,CEO卵丘明显扩展,而生发泡破裂(GVBD)则在16-20hr明显增加,所有卵丘未扩展的CEO中卵母细胞均未发生GVBD,低剂量hCG单独或与FSH共同存在,对CEO卵母细胞成熟及卵丘扩展均无明显影响;高剂量hCG可以部分抑制FSH对卵母细胞成熟的促进作用,结果表明:FSH明显促进CEO卵母细胞成熟及卵丘扩展,而hCG却不具有此作用,体外培养条件下(含次黄嘌呤),卵丘扩展是卵母细胞成熟的前提条件,但卵母细胞成熟并不需要卵丘完全扩展。  相似文献   

5.
Protein kinase C and meiotic regulation in isolated mouse oocytes   总被引:10,自引:0,他引:10  
In this study, the possible role of protein kinase C (PKC) in mediating both positive and negative actions on meiotic maturation in isolated mouse oocytes has been examined. When cumulus cell-enclosed oocytes (CEO) were cultured for 17-18 hr in a medium containing 4 mM hypoxanthine (HX) to maintain meiotic arrest, each of the five different activators and five different antagonists of PKC stimulated germinal vesicle breakdown (GVB) in a dose-dependent fashion. One of the activators, phorbol-12-myristate 13-acetate (PMA), also triggered GVB in CEO arrested with isobutylmethylxanthine or guanosine, but not in those arrested with dibutyryl cyclic AMP. When denuded oocytes (DO) were cultured for 3hr in inhibitor-free medium, all PKC activators suppressed maturation (<10% GVB compared to 94% in controls), while the effect of PKC antagonists was negligible. Four of the five antagonists reversed the meiosis-arresting action of HX in DO. PMA transiently arrested the spontaneous maturation of both CEO and DO, with greater potency in DO. The stimulatory action of PMA in HX-arrested oocytes was dependent on cumulus cells, because meiotic induction occurred in CEO but not DO. PKC activators also preferentially stimulated cumulus expansion when compared to antagonists. A cell-cell coupling assay determined that the action of PMA on oocyte maturation was not due to a loss of metabolic coupling between the oocyte and cumulus oophorus. Finally, Western analysis demonstrated the presence of PKCs alpha, beta1, delta, and eta in both cumulus cells and oocytes, but only PKC epsilon was detected in the cumulus cells. It is concluded that direct activation of PKC in the oocyte suppresses maturation, while stimulation within cumulus cells generates a positive trigger that leads to meiotic resumption.  相似文献   

6.
This study was carried out to examine the participation of epidermal growth factor (EGF)-like peptides in the induction of germinal vesicle breakdown (GVB) in mouse cumulus cell-enclosed oocytes (CEO). The EGF-like peptide, amphiregulin (AR), dose-dependently stimulated meiotic resumption in CEO, but not denuded oocytes (DO) maintained in meiotic arrest with 300 microM dbcAMP. The EGF receptor (EGFR) kinase inhibitor, AG1478, blocked meiotic resumption induced by FSH and AR in CEO, but had no effect in DO. FSH-induced maturation was also suppressed by antisera to both EGFR and EGF. Maturation occurred with slightly faster kinetics in AR-stimulated CEO when compared to FSH-stimulated CEO. When CEO were maintained in meiotic arrest with a low level of dbcAMP, FSH was initially inhibitory to maturation and later stimulatory; the stimulatory phase was prevented by AG1478, indicating mediation by EGF-like peptides. Pulsing CEO with high levels of dbcAMP also stimulated GVB and could be blocked by AG1478. Treatment of arrested CEO with PKC agonists stimulated maturation and this was prevented with AG1478 as well as antibodies to EGFR. FSH-induced maturation of dbcAMP-arrested CEO was blocked by bisindolylmaleimide I (BIM-I), an inhibitor of PKC, implicating PKC in FSH action. EGF-stimulated CEO failed to resume maturation in the presence of glycerrhetinic acid, a gap junction inhibitor, suggesting transfer of positive signal through the cell-cell coupling pathway. These data support the idea that EGF-like peptides provide a common pathway mediating the meiosis-inducing influence of FSH, cAMP pulsing, and PKC activation in mouse CEO by a gap junction-dependent process.  相似文献   

7.
夏国良 《动物学报》1996,42(4):408-413
实验研究了小鼠卵母细胞体外过程中卵丘-卵母细胞间的相互作用。实验小鼠为雌性B6D2杂交一代。激素处理48小时后分离出卵后天和卵母细胞复合体,并培养在含有次黄嘌呤的培养液中。24小时后检查卵母细胞核成熟情况。  相似文献   

8.
本文研究了嘌呤类物质对小鼠卵母细胞减数分裂的影响。于卵母细胞的生发泡内显微注射腺嘌呤和腺嘌呤的类似物苄基腺嘌呤可显著抑制卵母细胞的分裂的重新启动。同时发现在腺嘌呤的作用过程中,腺苷酸环化酶的激活剂氟化钠可增强其对卵母细胞的抑制作用,表明cAMP途径在小鼠卵母细胞减数分裂成熟过程中起重要作用。腺嘌呤在不同培养液中的抑制效果不一,次黄嘌呤在DMEM和EMEM中对小鼠的卵丘细胞-卵母细胞复合体(COC)和无卵丘细胞的裸卵(DO)均具有明显的抑制效应。但腺嘌呤在DMEM比在EMEM中对COC的抑制效果更强,而且腺嘌呤在DMEM中与次黄嘌呤具有协同效应,这些差别可能是由于两种培养液中不同成分如谷氨酰胺造成卵母细胞对腺嘌呤吸收差异而引起的。  相似文献   

9.
Cumulus cells are metabolically coupled to the mammalian oocyte via heterologous gap junctions. One function attributed to the gap junctional communications is the transfer of regulatory signals that direct the meiotic state of the oocyte. However, the precise role of these junctions in meiotic maturation is still unclear. The aim of this study was to test the hypothesis that meiotic resumption is induced by the transfer of a stimulatory signal(s) from the cumulus cells to the oocyte through the gap junctional coupling pathway. We have previously shown that the mitogenic lectin concanavalin A (Con A) induces oocyte maturation in isolated cumulus cell-enclosed oocytes (CEO) when meiotic arrest is maintained with a number of different inhibitory agents [Biol Reprod 1990; 42:413-423]. In the present study, Con A stimulated maturation in dibutyryl cAMP (dbcAMP)-arrested CEO but not in denuded oocytes cocultured with cumulus cells. Heptanol, a known gap junction uncoupler, effectively prevented Con A- and FSH-induced maturation of intact CEO and dramatically reduced metabolic coupling between cumulus cells and the oocyte. However, this alcohol had no effect on denuded oocytes (DO) or on dbcAMP-arrested CEO in the absence of stimulating ligand. Con A and FSH produced only a minimal loss of coupling. When the effects of heptanol were compared with those of the n-alkanols hexanol and decanol, the efficacies of these agents as suppressors of Con A-stimulated oocyte maturation was directly related to their relative abilities to suppress metabolic coupling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
本实验利用卵母细胞的体外培养模型,将小鼠卵丘-卵母细胞复合体(CEO)和去卵丘卵母细胞(DO)在体外培养,系统研究了促性腺激素(FSH、hCG)诱导小鼠卵母细胞减数分裂的机制。结果显示,FSH能剂量依赖性地诱导CEO恢复减数分裂(Fig.1),但对DO无影响;hCG对 CEO、 DO皆无效果(Fig.2);用 FSH预处理CEO时间达到1小时后,就能显著诱导卵母细胞成熟,2小时后作用达到最大;不再增强(Fig.3);用 FSH处理CEO 2小时及24小时的培养液,能诱导DO恢复减数分裂,但预处理卵丘细胞24小时的培养液,并不能诱导DO恢复减数分裂(Fig.4A);这种培养液在70℃下30分钟后,仍能刺激DO成熟(Fig.4B);甾醇类物质合成抑制剂酮康唑,可剂量依赖性地抑制FSH的促减数分裂恢复作用(Fig.5)。这些结果说明, FSH可能诱导卵丘-卵母细胞复合体中的卵丘细胞分泌一种促减数分裂恢复物质;该物质作用于卵母细胞,诱导其恢复减数分裂而成熟;这种物质可能是一种甾醇类物质。  相似文献   

11.
This study was carried out to compare the possible role of a secreted paracrine factor versus that of a gap-junction-transmitted signal in mediating meiotic induction in isolated mouse oocytes from PMSG-primed, immature mice. In the first set of experiments, oocyte-cumulus cell complexes (OCC) were pretreated for 3 h with 2 mM dbcAMP or FSH, washed, and the oocytes then cultured for 17-18 h in 40 microl drops containing either 300 microM dbcAMP or 4 mM hypoxanthine (HX). Each set of pretreated oocytes was cultured under three different conditions: (1) intact cumulus-cell-enclosed oocytes (CEO); (2) denuded oocytes (DO), cultured alone after removal of cumulus cells; and (3) co-cultured cumulus cells and oocytes (CC/DO), where the cumulus cells were removed in the same drop with a mouth-operated pipette and cultured alongside the oocytes. When pretreated with high dbcAMP or FSH, maturation was stimulated in CEO when cultured in either inhibitor (by 41.4-53.7%). Pretreatment failed to affect the maturation rate in DO. DO maturation was not altered appreciably by co-cultured cumulus cells when arrest was maintained with dbcAMP. However, an increase in maturation of 21-23% was observed in CC/DO in the HX-containing cultures that was not dependent on prior treatment with a meiosis-inducing stimulus. When DO were co-cultured with intact, FSH-treated OCC, there was no evidence of a positive factor secreted by the stimulated complexes, despite the fact that oocytes within the OCC were induced to resume maturation. In a second series of experiments the gap junction inhibitor, 18alpha-glycyrrhetinic acid (GA), was utilised. An initial experiment determined that GA dose-dependently blocked OCC metabolic coupling (0.2% coupling at 10 microM compared with 13.6% in controls). When HX-arrested CEO and DO were cultured for 17-18 h in medium containing increasing concentrations of GA, meiotic maturation was induced in CEO but not DO, suggesting that the cumulus cells provided a positive stimulus in the absence of functional gap junctional communication. No effect of GA was seen in dbcAMP-arrested oocytes. A kinetics experiment showed that when CEO were cultured in dbcAMP +/- FSH, meiotic induction was initiated after 3 h and germinal vesicle breakdown reached 60% by 6 h. When GA was added to the cultures at different times after the initiation of culture (0, 2, 3, 4 and 5 h), meiotic induction was immediately blocked. In addition, measurement of OCC coupling revealed that no reduction in coupling occurred during this induction period in the absence of GA. It is concluded that cumulus cells can secrete a positive factor, but that this is normally overridden by inhibitory influences transmitted through the gap junction pathway in intact complexes. Furthermore, upon exposure of complexes to a meiosis-inducing stimulus, a positive gap-junction-mediated signal now predominates to trigger germinal vesicle breakdown, and this signal is utilised throughout the induction period.  相似文献   

12.
Cyclic adenosine monophosphate (cAMP) has been implicated as an important regulator of meiotic maturation in mammalian oocytes. A decrease in cAMP, brought about by the action of cAMP phosphodiesterase (PDE), is thought to initiate germinal vesicle breakdown (GVB) by the inactivation of cAMP-dependent protein kinase. However, the product of PDE activity, 5'-AMP, is a potent activator of an important regulatory enzyme, AMP-activated protein kinase (AMPK). The aim of this study was to evaluate a possible role for AMPK in meiotic induction, using oocytes obtained from eCG-primed, immature mice. Alpha-1 and -2 isoforms of the catalytic subunit of AMPK were detected in both oocytes and cumulus cells. When 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICA riboside), an activator of AMPK, was tested on denuded oocytes (DO) and cumulus cell-enclosed oocytes (CEO) maintained in meiotic arrest by dbcAMP or hypoxanthine, GVB was dose-dependently induced. Meiotic induction by AICA riboside in dbcAMP-supplemented medium was initiated within 3 h in DO and 4 h in CEO and was accompanied by increased AMPK activity in the oocyte. AICA riboside also triggered GVB when meiotic arrest was maintained with hypoxanthine, 8-AHA-cAMP, guanosine, or milrinone, but was ineffective in olomoucine- or roscovitine-arrested oocytes, indicating that it acts upstream of maturation-promoting factor. Adenosine monophosphate dose-dependently stimulated GVB in DO when meiotic arrest was maintained with dbcAMP or hypoxanthine. This effect was not mimicked by other monophosphate or adenosine nucleotides and was not affected by inhibitors of ectophosphatases. Combined treatment with adenosine and deoxycoformycin, an adenosine deaminase inhibitor, stimulated GVB in dbcAMP-arrested CEO, suggesting AMPK activation due to AMP accumulation. It is concluded that phosphodiesterase-generated AMP may serve as a transducer of the meiotic induction process through activation of AMPK.  相似文献   

13.
We have examined the potential role of fatty acid oxidation (FAO) in AMP‐activated protein kinase (AMPK)‐induced meiotic maturation. Etomoxir and malonyl CoA, two inhibitors of carnitine palmitoyl transferase‐1 (CPT1), and thus FAO, blocked meiotic induction in dbcAMP‐arrested cumulus cell‐enclosed oocytes (CEO) and denuded oocytes (DO) by the AMPK activator, AICAR. C75, an activator of CPT1 and FAO, stimulated meiotic resumption in CEO and DO. This effect was insensitive to the AMPK inhibitor, compound C, indicating an action downstream of AMPK. Palmitic acid or carnitine also promoted meiotic resumption in DO in the presence of AICAR. Since C75 also suppresses the activity of fatty acid synthase (FAS), we tested another FAS inhibitor, cerulenin. Cerulenin stimulated maturation in arrested oocytes, but to a lesser extent, exhibited significantly slower kinetics and was effective in CEO but not DO. Moreover, etomoxir completely blocked C75‐induced maturation but was ineffective in cerulenin‐treated oocytes, suggesting that the meiosis‐inducing action of C75 is through activation of FAO within the oocyte, while that of cerulenin is independent of FAO and acts within the cumulus cells. Finally, we determined that long chain, but not short chain, fatty acyl carnitine derivatives were stimulatory to oocyte maturation. Palmitoyl carnitine stimulated maturation in both CEO and DO, with rapid kinetics in DO; this effect was blocked by mercaptoacetate, a downstream inhibitor of FAO. These results indicate that activation of AMPK stimulates meiotic resumption in mouse oocytes by eliminating a block to FAO. Mol. Reprod. Dev. 76: 844–853, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
褪黑素对FSH诱导的小鼠卵母细胞体外成熟的影响   总被引:1,自引:0,他引:1  
通过次黄嘌呤(HX)阻滞、FSH诱导体外培养模型研究了褪黑素(MT)对小鼠卵母细胞成熟的影响,探讨褪黑素(MT)是否影响小鼠卵母细胞的体外成熟。0.1mg/mL和0.02mg/mL两有效浓度的MT能显著抑制促性腺激素(FSH)诱导的HX阻滞的CEOsGVBD的发生(P<0.05),对PBl的排出虽有一定的抑制作用,但没有统计学意义;MT和次黄嘌呤(HX)对CEOs的自发成熟有协同抑制作用(P<0.01),但在裸卵(DO)自发成熟的阻滞中没有协同效应。MT是调节哺乳动物卵母细胞成熟的重要激素之一,其作用机制可能是通过卵丘细胞实现的。  相似文献   

15.
We have used carbohydrate-binding proteins, or lectins, as tools to investigate the physiological phenomena associated with the preovulatory maturation of the oocyte-cumulus cell complex. Certain lectins are mitogens, and since other mitogenic agents such as growth factors are known to stimulate meiotic maturation and cumulus expansion, we tested the ability of lectins to provoke these physiological responses. Cumulus cell-enclosed oocytes (CEO) from primed mice were maintained in meiotic arrest in vitro with dibutyryl cyclic adenosine 3',5'-monophosphate (dbcAMP) and treated with one of eleven different lectins. With the exception of pokeweed mitogen (PWM), all of the mitogenic lectins tested were able to induce germinal vesicle breakdown (GVB) in meiotically arrested oocytes, and this action required the presence of the somatic cumulus cells; in fact, either there was no effect or maturation was suppressed when cumulus cell-free oocytes (denuded oocytes; DO) were treated with lectins. None of the nonmitogenic lectins stimulated meiotic maturation in either CEO or DO. The mitogenic lectin concanavalin A (Con A) also induced maturation in CEO when meiotic arrest was maintained with hypoxanthine, guanosine, or 3-isobutyl-1-methylxanthine. The kinetics of spontaneous oocyte maturation in inhibitor-free medium were not altered by Con A. Only the mitogenic lectins that induced meiotic maturation stimulated cumulus expansion, with Con A the most active lectin. The actions of Con A on the maturation of the oocyte-cumulus cell complex were inhibited by methyl-alpha-D-mannopyranoside as predicted by its sugar-binding specificity. These results demonstrate that (1) lectins can stimulate maturation of the mouse oocyte-cumulus cell complex; (2) mitogenicity is associated with the positive activity of the lectins; and (3) cumulus cells mediate the stimulatory action of lectins on oocyte maturation, while inhibition of GVB occurs at the oocyte level. These data support the idea that common signals mediate the mitogenic and maturation-inducing actions of lectins.  相似文献   

16.
The efficacy of follicle-stimulating hormone (FSH), epidermal growth factor (EGF), and dibutyryl cGMP (dbcGMP) as inducers of germinal vesicle breakdown (GVBD) in cumulus cell-enclosed mouse oocytes was examined when meiotic arrest was maintained in vitro with purines, dibutyryl cAMP (dbcAMP), or the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX). When FSH was added to hypoxanthine (HX)-containing medium, the effect on oocyte maturation was at first inhibitory and later stimulatory. EGF stimulated GVBD at all time points tested. FSH and EGF also induced GVBD when oocytes were arrested with dbcAMP, IBMX, or guanosine. Dibutyryl cGMP stimulated GVBD when meiotic arrest was maintained with HX, but not when oocytes were meiotically arrested with guanosine, and was inhibitory in dbcAMP-supplemented medium. FSH and dbcGMP produced a transient delay of oocyte maturation in control medium, but the FSH effect was much more pronounced. EGF had no effect on maturation kinetics. The actions of FSH and EGF required the presence of cumulus cells. Both agents significantly stimulated cAMP production in oocyte-cumulus cell complexes. A brief exposure of complexes to a high concentration of dbcAMP induced GVBD, suggesting that FSH and EGF may act via a cAMP-dependent process. The frequency of FSH- and EGF-induced GVBD in cumulus cell-enclosed oocytes was significantly higher than the frequency of GVBD when oocytes were cultured while denuded of cumulus cells. of maturation is apparently not mediated solely by oocyte-cumulus cell uncoupling and termination of the transfer of an inhibitory meiotic signal from cumulus cells to the oocyte. The data suggest the generation of a positive signal within cumulus cells in response to hormone treatment that acts upon the oocyte to stimulate GVBD in the continued presence of inhibitory factors.  相似文献   

17.
We have examined adenosine (Ado) suppression of FSH-induced germinal vesicle breakdown (GVB) and its relationship to purine de novo synthesis. Oocyte-cumulus cell complexes (OCC) from PMSG-primed, immature mice were cultured 17-18 hr in medium containing 4 mM hypoxanthine (HX) or 300 microM dibutyryl cAMP (dbcAMP) to maintain meiotic arrest, and FSH was added to stimulate meiotic maturation. In the absence of FSH, Ado (1-250 microM) had no effect in dbcAMP-arrested oocytes but dose-dependently suppressed maturation in HX-treated oocytes. FSH-induced maturation was prevented by Ado, though more effectively in dbcAMP-supplemented cultures. Ado affected the magnitude, but not the kinetics pattern, of the response to FSH. Inosine also blocked meiotic induction, but only in dbcAMP-arrested oocytes. Purine de novo synthesis was nearly doubled in OCC by FSH treatment, and this response was completely prevented by Ado. FSH had no effect on HX salvage, although Ado reduced this activity by 98%. Inosine effects on metabolism were intermediate between the control and Ado groups. Experiments with radiolabeled energy substrates showed that Ado suppressed FSH activation of the pentose phosphate pathway but did not prevent significant activation of glycolysis or oxidation of pyruvate. Finally, in cultured follicles from primed mice, hCG-induced maturation was blocked by Ado as effectively as by the purine de novo synthesis inhibitor, azaserine. It is concluded that Ado has an inhibitory action on hormone-induced maturation that is due, at least in part, to suppression of glucose metabolism, leading to compromised purine de novo synthesis.  相似文献   

18.
Altered meiotic regulation in oocytes from diabetic mice   总被引:1,自引:0,他引:1  
In the present study, we have utilized a streptozotocin-induced diabetic mouse model to examine how the diabetic condition and different glucose concentrations affect several parameters of reproductive physiology. We report that oocyte maturation is altered under all experimental conditions examined. In cumulus cell-enclosed oocytes (CEO) from diabetic mice, spontaneous maturation was accelerated but the FSH-mediated delay of spontaneous maturation was suppressed. Higher glucose levels in the culture medium suppressed spontaneous maturation but did not influence the transient arrest mediated by FSH. Meiotic arrest in CEO by hypoxanthine and dibutyryl cAMP (dbcAMP) was less effective at higher glucose concentrations. In addition, both FSH-induced maturation in vitro and hCG-induced maturation in vivo were reduced by the diabetic condition. The ovulation rate was lowered by about 50% in diabetic mice and fewer ovulated ova had reached metaphase II. Despite the decreased number of ova at metaphase II, in vitro cultures showed the oocytes were capable of completing meiotic maturation at control levels. Insulin treatment reversed the detrimental effects of diabetes on meiotic induction, ovulation, and completion of meiotic maturation. Cultures of pronuclear-staged embryos confirmed a negative effect of diabetes and hyperglycemia on development to the blastocyst stage. These data suggest that defects in meiotic regulation brought about by the diabetic condition are due to decreased communication between the somatic and germ cell compartments, and it is concluded that such conditions may contribute to postfertilization developmental abnormalities.  相似文献   

19.
Cumulus cell-enclosed oocytes (CEO), denuded oocytes (DO), or dissected follicles were obtained 44-48?hr after priming immature mice (20-23 days old) with 5?IU or immature rats (25-27 days old) with 12.5?IU of equine chorionic gonadotropin, and exposed to a variety of culture conditions. Mouse oocytes were more effectively maintained in meiotic arrest by hypoxanthine, dbcAMP, IBMX, milrinone, and 8-Br-cGMP. Atrial natriuretic peptide, a guanylate cyclase activator, suppressed maturation in CEO from both species, but mycophenolic acid reversed IBMX-maintained meiotic arrest in mouse CEO with little activity in rat CEO. IBMX-arrested mouse, but not rat, CEO were induced to undergo germinal vesicle breakdown (GVB) by follicle-stimulating hormone (FSH) and amphiregulin, while human chorionic gonadotropin (hCG) was ineffective in both species. Nevertheless, FSH and amphiregulin stimulated cumulus expansion in both species. FSH and hCG were both effective inducers of GVB in cultured mouse and rat follicles while amphiregulin was stimulatory only in mouse follicles. Changing the culture medium or altering macromolecular supplementation had no effect on FSH-induced maturation in rat CEO. The AMP-activated protein kinase (AMPK) activator, AICAR, was a potent stimulator of maturation in mouse CEO and DO, but only marginally stimulatory in rat CEO and ineffective in rat DO. The AMPK inhibitor, compound C, blocked meiotic induction more effectively in hCG-treated mouse follicles and heat-treated mouse CEO. Both agents produced contrasting results on polar body formation in cultured CEO in the two species. Active AMPK was detected in germinal vesicles of immature mouse, but not rat, oocytes prior to hCG-induced maturation in vivo; it colocalized with chromatin after GVB in rat and mouse oocytes, but did not appear at the spindle poles in rat oocytes as it did in mouse oocytes. Finally, cultured mouse and rat CEO displayed disparate maturation responses to energy substrate manipulation. These data highlight significant differences in meiotic regulation between the two species, and demonstrate a greater potential in mice for control at the level of the cumulus CEO.  相似文献   

20.
Protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in cumulus cells are involved in FSH-induced meiotic resumption of cumulus-enclosed oocytes (CEOs), but their regulation and cross talk are unknown. The present experiments were designed to investigate 1) the possible involvement of MAPK cascade in PKC-induced meiotic resumption; 2) the regulation of PKC on MAPK activity in FSH-induced oocyte maturation; and 3) the pattern of PKC and MAPK function in induced meiotic resumption of mouse oocytes. PKC activators, phorbol 12-myristate 13-acetate (PMA) and 1-oleoyl-2-acetyl-sn-glycerol (OAG), induced the meiotic resumption of CEOs and activation of MAPK in cumulus cells, whereas this effect could be abolished by PKC inhibitors, calphostin C and chelerythrine, or MEK inhibitor U0126. These results suggest that PKC might induce the meiotic reinitiation of CEOs by activating MAPK in cumulus cells. Both PKC inhibitors and U0126 inhibited the FSH-induced germinal vesicle breakdown (GVBD) of oocytes and MAPK activation in cumulus cells, suggesting that PKC and MAPK are involved in FSH-induced GVBD of mouse CEOs. Protein synthesis inhibitor cycloheximide (CHX) inhibited FSH- or PMA-induced oocyte meiotic resumption, but not the MAPK activation in cumulus cells. FSH and PKC activators induced the GVBD in denuded oocytes cocultured with cumulus cells in hypoxanthine (HX)-supplemented medium, and this effect could be reversed by U0126. Thus, when activated by FSH and PKC, MAPK may stimulate the synthesis of specific proteins in cumulus cells followed by secretion of an unknown positive factor that is capable of inducing GVBD in oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号