首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 579 毫秒
1.
大豆种皮色相关基因研究进展   总被引:3,自引:0,他引:3  
Song J  Guo Y  Yu LJ  Qiu LJ 《遗传》2012,34(6):687-694
大豆种皮色在从野生大豆到栽培大豆的演变过程中逐渐从黑色变成黄色,是重要的形态标记,因此,大豆种皮色相关基因研究无论对进化理论还是育种实践都具有重要的意义。种皮颜色是通过各种花色苷的沉积而形成的。虽然很多植物色素沉积的分子调控机制比较明晰,但大豆中控制种皮颜色形成的基因尚未被完全了解。文章综述了控制大豆种皮色基因与位点的相关研究进展,主要有I、T、W1、R、O 5个经典遗传位点,其中I位点被定位在第8号染色体(A2连锁群)一个富含查尔酮合成酶(CHS)的区域,CHS基因在大豆中是多基因家族且同源性较高;定位于第6号染色体(C2连锁群)T位点的基因F3’H已被克隆和转基因验证,由于碱基缺失导致所编码的氨基酸缺少了保守域GGEK,从而不能与血红素结合而丧失功能;R位点定位在第9号染色体(K连锁群)A668-1与K387-1两标记之间,可能是R2R3类MYB转录因子,也可能是UDP类黄酮3-O糖基转移酶;O位点定位在第8号染色体(A2连锁群)Satt207与Satt493两标记之间,其分子特性尚不清楚;W1位点可能由F3’5’H基因控制遗传。  相似文献   

2.
以印度南瓜‘98-2-351’与‘06820-1’杂交构建F2群体,对亲本及各世代群体成熟果实果皮和果肉颜色进行调查、统计分析。结果表明:F2群体中果皮桔红色和灰色的分离比呈3∶1,说明果皮灰色是由单隐性基因控制;F2群体中果肉黄色和白色的分离比呈3∶1,说明果肉白色也是由单隐性基因控制。利用群体分离分析法结合隐性群体分析法,采用SSR分子标记,找到了2个与控制灰色果皮基因位点CmRc紧密连锁的SSR标记(PU078072和PU013839),其连锁遗传距离分别为5.9cM和14.5cM;同时找到了1个与控制白色果肉基因位点CmFc紧密连锁的SSR标记PU132712,其连锁遗传距离为6.7cM。本研究为进一步筛选与控制印度南瓜果皮和果肉颜色基因更加紧密连锁的分子标记及相关基因的精确定位奠定了基础。  相似文献   

3.
用SSR标记鉴定大豆杂交组合F1的方法研究   总被引:10,自引:0,他引:10  
为建立鉴定大豆杂种的方法,采用亲本间有多态性的3对SSR引物,对148个耐盐与盐敏感大豆品种正反交F1植株进行分子鉴定,结果表明,有81.8%的F1为真杂种,且3对多态性SSR引物检测结果一致;在亲本基因型纯合的情况下,采用1对在亲本间有多态性的SSR引物即可对F1真伪进行准确判断;亲本间分子量差异大的SSR位点可用高浓度琼脂糖电泳进行快速鉴定。利用该方法对2007年参加国家大豆区试的大豆杂交种品系H02—286的50粒种子进行纯度鉴定,进一步验证了SSR标记检测杂种真伪的可行性。  相似文献   

4.
以大豆品种‘黑农35号’为材料,利用同源克隆方法获得了一个依赖于Fe(Ⅱ)和2-酮戊二酸的双加氧酶基因,命名为GmF6′H1。荧光定量PCR分析显示GmF6′H1在大豆根中的表达量最高,其次是荚果、叶和茎;2,4-D处理对大豆GmF6′H1的转录水平影响很小,水杨酸和激动素的处理均显著提高了GmF6′H1基因的表达,但随着处理时间的延长表达水平稳定下降,最后接近处理前的水平。带有组氨酸标签的GmF6′H1异源表达的蛋白纯化后,以阿魏酰辅酶A为底物研究了其酶活特性,利用HPLC分析检测到GmF6′H1能够催化阿魏酰辅酶A生成东莨菪素。采用农杆菌介导法将该基因转入拟南芥Atf6′h1突变体,转基因拟南芥与Atf6′h1突变体植株外在表型没有明显的差异,而香豆素的含量分析显示,转基因株系根中香豆素的含量较拟南芥Atf6′h1突变体有所提高,与野生型拟南芥中香豆素的含量接近。  相似文献   

5.
选用抗稻瘟病水稻品种‘沈农606’为抗病亲本与感病品种‘丽江新团黑谷’配制杂交组合.鉴定亲本、F_1正反交及其F_2群体的抗病性的结果表明,‘沈农606’的抗性受一对显性基因控制.采用相关序列扩增多态性(SRAP)和简单序列重复(SSR)标记,以及分离体分组混合分析法(BSA)将该基因定位于8号染色体上,其与SRAP标记m5e1-500的遗传距离为2.8 cM,与SSR标记RM25的遗传距离为9.8 cM,暂命名为Pi-SN606.m5e1-500序列位于8号染色体上,它能编码大于40个氨基酸的阅读框有2个,在NCBI网站上没有比对到同源性序列。  相似文献   

6.
为了对葡萄雄性不育基因进行定位研究,以可育葡萄‘魏可’(Vitis vinifera L.)为亲本构建的自交群体88株为试验材料,运用分离群体分组混合分析法(bulked segregant analysis,BSA),构建了可育株和不育株基因池,结合SSR技术对葡萄雄性不育基因进行定位研究和生物信息学分析。该研究筛选到2个与葡萄雄性不育基因连锁的SSR标记VVMD34和VVIB23,且位于该基因两侧,遗传距离分别为3.5cM和1.9cM。2个标记间物理距离为1 134kb,在该区域总共预测到了111个候选基因。该研究对葡萄雄性不育基因的精细定位及分子标记辅助育种奠定了良好的基础。  相似文献   

7.
以160头荷斯坦和娟姗奶牛作为研究对象,分别测定了其在不同温度条件下,直肠温度、呼吸频率、产奶量及乳成分,并进行了统计分析。同时设计引物扩增HSP70基因3’-侧翼区,通过PCR—SSCP技术分析hSPTO基因3’-侧翼区的多态性,并发现一个多态位点。结果表明:扩增片段为292bp,扩增产物有基因多态性,共发现4种基因型,分别为荷斯坦牛的AA(H)型、AB(H)型和娟姗牛的AA(J)刭、AB(J)型。其中B基因可能为抗热应激耩囚,这4种基囚型奶牛个体的生产性能差异不显著(P〉0.05)。  相似文献   

8.
根据Ⅰ-2的基因序列设计特异扩增引物对Ⅰ-2/5F和Ⅰ-2/5R,扩增Ⅰ-2基因3 132~3 765 bp之间片段,基因型为Ⅰ-2/Ⅰ-2的材料03F-7可扩增出633 bp的条带.而基因型为I-2/I-2的材料Moneymaker可扩增出693 bp的条带,杂合型材料可扩增出以上2个条带.通过这两个特异扩增片段的克隆和测序证明,抗病材料扩增的633 bp片段为Ⅰ-2基因的3 132~3 765 bp之间的序列,而感病等位基因中出现大量的碱基突变和60 bp片段插入.利用引物对Ⅰ-2/5F和Ⅰ-2/5R,可区分纯合抗病材料、杂合抗病材料和纯合感病材料,从而建立了Ⅰ-2基因的共显性分子标记.在此基础上,利用该标记对16个主要番茄品种进行基因型鉴定,8个品种含有,Ⅰ-2基因,其中1个品种基因型为Ⅰ-2/Ⅰ-2,其他品种为Ⅰ-2/I*2.通过一次PCR和一次HindⅢ酶切建立了Ⅰ-2和Tm-22双基因检测体系,为多基因鉴定及标记辅助选择提供了有力工具.  相似文献   

9.
以大豆品种‘合丰25’为母本,半野生大豆‘新民6号’为父本杂交得到的F2-9代122个重组自交系为试验材料,构建了含有124个SSR标记、1个EST标记、3个形态学标记的大豆遗传图谱。此图谱覆盖的基因组长度为2348.3cM.标记间平均距离为18.3cM。每个连锁群长度范围为15.1~195.9cM之间,标记数范围2—10个。本文将控制茸毛色(Pb)基因定位于LG06-C2连锁群上,与Sat_40x2的遗传距离为39.6cM;控制叶耳g(Le)、花色(4W,)基因定位于LG12-F连锁群上,它们之间的遗传距离为9.9cM,与两边的Satt348、Sat_240标记遗传距离分别为13.3cM和10.5cM。  相似文献   

10.
磷利用效率与大豆产量密切相关,根尖酸性磷酸酶活性是筛选大豆品种磷效率的重要指标。挖掘酸性磷酸酶活性候选基因并开发其功能标记对获得磷高效功能基因、解析磷利用分子机制和培育磷高效大豆新品种意义重大。本研究利用酸性磷酸酶活性重组自交系群体F12构建了2个极端性状混池DNA文库,通过SLAF-BSA技术,获得了268个与大豆酸性磷酸酶活性关联的SNP,包括12个非同义突变,其中亲本间7个,后代混池间5个;在2个关联候选区域,获得79个酸性磷酸酶活性相关基因,其中第3号染色体的20138271~20268154间4个,17号染色体的14368648~15526449间75个;对该区域内基因进行了功能注释。开发了非同义突变基因Glyma.17G166200.1功能标记GMsnp-B,用该标记检测169份大豆栽培品种基因型,与表型符合率达到82.8%。  相似文献   

11.
Zabala G  Vodkin L 《Genetics》2003,163(1):295-309
Three loci (I, R, and T) control pigmentation of the seed coats in Glycine max and are genetically distinct from those controlling flower color. The T locus also controls color of the trichome hairs. We report the identification and isolation of a flavonoid 3' hydroxylase gene from G. max (GmF3'H) and the linkage of this gene to the T locus. This GmF3'H gene was highly expressed in early stages of seed coat development and was expressed at very low levels or not at all in other tissues. Evidence that the GmF3'H gene is linked to the T locus came from the occurrence of multiple RFLPs in lines with varying alleles of the T locus, as well as in a population of plants segregating at that locus. GmF3'H genomic and cDNA sequence analysis of color mutant lines with varying t alleles revealed a frameshift mutation in one of the alleles. In another line derived from a mutable genetic stock, the abundance of the mRNAs for GmF3'H was dramatically reduced. Isolation of the GmF3'H gene and its identification as the T locus will enable investigation of the pleiotropic effects of the T locus on cell wall integrity and its involvement in the regulation of the multiple branches of the flavonoid pathway in soybean.  相似文献   

12.
Seed coat color inheritance in Brassica napus was studied in F1, F2, F3 and backcross progenies from crosses of five black seeded varieties/lines to three pure breeding yellow seeded lines. Maternal inheritance was observed for seed coat color in B. napus, but a pollen effect was also found when yellow seeded lines were used as the female parent. Seed coat color segregated from black to dark brown, light brown, dark yellow, light yellow, and yellow. Seed coat color was found to be controlled by three genes, the first two genes were responsible for black/brown seed coat color and the third gene was responsible for dark/light yellow seed coat color in B. napus. All three seed coat color alleles were dominant over yellow color alleles at all three loci. Sequence related amplified polymorphism (SRAP) was used for the development of molecular markers co-segregating with the seed coat color genes. A SRAP marker (SA12BG18388) tightly linked to one of the black/brown seed coat color genes was identified in the F2 and backcross populations. This marker was found to be anchored on linkage group A9/N9 of the A-genome of B. napus. This SRAP marker was converted into sequence-characterized amplification region (SCAR) markers using chromosome-walking technology. A second SRAP marker (SA7BG29245), very close to another black/brown seed coat color gene, was identified from a high density genetic map developed in our laboratory using primer walking from an anchoring marker. The marker was located on linkage group C3/N13 of the C-genome of B. napus. This marker also co-segregated with the black/brown seed coat color gene in B. rapa. Based on the sequence information of the flanking sequences, 24 single nucleotide polymorphisms (SNPs) were identified between the yellow seeded and black/brown seeded lines. SNP detection and genotyping clearly differentiated the black/brown seeded plants from dark/light/yellow-seeded plants and also differentiated between homozygous (Y2Y2) and heterozygous (Y2y2) black/brown seeded plants. A total of 768 SRAP primer pair combinations were screened in dark/light yellow seed coat color plants and a close marker (DC1GA27197) linked to the dark/light yellow seed coat color gene was developed. These three markers linked to the three different yellow seed coat color genes in B. napus can be used to screen for yellow seeded lines in canola/rapeseed breeding programs.  相似文献   

13.
The yellow seed coat trait in No. 2127-17, a resynthesized purely yellow Brassica napus line, is controlled by a single partially dominant gene, Y. A double-haploid population derived from the F1 of No. 2127-17 x 'ZY821' was used to map the seed coat color phenotype. A combination of AFLP analysis and bulked segregant analysis identified 18 AFLP markers linked to the seed coat color trait. The 18 AFLP markers were mapped to a chromosomal region of 37.0 cM with an average of 2.0 cM between adjacent markers. Two markers, AFLP-K and AFLP-H, bracketed the Y locus in an interval of 1.0 cM, such that each was 0.5 cM away from the Y locus. Two other markers, AFLP-A and AFLP-B, co-segregated with the seed color gene. For ease of use in breeding programs, these 4 most tightly linked AFLP markers were converted into reliable PCR-based markers. SCAR-K, which was derived from AFLP-K, was assigned to linkage group 9 (N9) of a B. napus reference map consisting of 150 commonly used SSR (simple sequence repeat) markers. Furthermore, 2 SSR markers (Na14-E08 and Na10-B07) linked to SCAR-K on the reference map were reversely mapped to the linkage map constructed in this study, and also showed linkage to the Y locus. These linked markers would be useful for the transfer of the dominant allele Y from No. 2127-17 to elite cultivars using a marker-assisted selection strategy and would accelerate the cloning of the seed coat color gene.  相似文献   

14.
Color is one of the phenotypic markers mostly used to study soybean (Glycine max L. Merr.) genetic, molecular and biochemical processes. Two P450-dependent mono-oxygenases, flavonoid 3′-hydroxylase (F3′H; EC1.14.3.21) and flavonoid 3′,5′-hydroxylase (F3′5′H, EC1.14.13.88), both catalyzing the hydroxylation of the B-ring in flavonoids, play an important role in coloration. Previous studies showed that the T locus was a gene encoding F3′H and the W1 locus co-segregated with a gene encoding F3′5′H in soybean. These two genetic loci have identified to control seed coat, flower and pubescence colors. However, the allelic distributions of both F3′H and F3′5′H genes in soybean were unknown. In this study, three novel alleles were identified (two of four alleles for GmF3′H and one of three alleles for GmF3′5′H). A set of gene-tagged markers was developed and verified based on the sequence diversity of all seven alleles. Furthermore, the markers were used to analyze soybean accessions including 170 cultivated soybeans (G. max) from a mini core collection and 102 wild soybeans (G. soja). For both F3′H and F3′5′H, the marker selection efficiencies for pubescence color and flower color were determined. The results showed that one GmF3′H allele explained 92.2 % of the variation in tawny and two gmf3′h alleles explained 63.8 % of the variation in gray pubescence colors. In addition, two GmF3′5′H alleles and one gmF3′5′h allele explained 94.0 % of the variation in purple and 75.3 % in white flowers, respectively. By the combination of the two loci, seed coat color was determined. In total, 90.9 % of accessions possessing both the gmf3′h-b and gmf3′5′h alleles had yellow seed coats. Therefore, seed coat colors are controlled by more than two loci.  相似文献   

15.
Huang Z  Ban Y  Yang L  Zhang Y  Li H  Xiao E  Xu A  Zhang D 《Génome》2012,55(1):8-14
The yellow mustard plant in Northern Shaanxi is a precious germplasm, and the yellow seed trait is controlled by a single recessive gene. In this report, amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) techniques were used to identify markers linked to the brown seed locus in an F(2) population consisting of 1258 plants. After screening 256 AFLP primer combinations and 456 pairs of SSR primers, we found 14 AFLP and 2 SSR markers that were closely linked to the brown seed locus. Among these markers, the SSR marker CB1022 showed codominant inheritance. By integrating markers previously found to be linked to the brown seed locus into the genetic map of the F(2) population, 23 markers were linked to the brown seed locus. The two closest markers, EA02MC08 and P03MC08, were located on either side of the brown seed locus at a distance of 0.3 and 0.5 cM, respectively. To use the markers for the breeding of yellow-seeded mustard plants, two AFLP markers (EA06MC11 and EA08MC13) were converted into sequence-characterized amplified region (SCAR) markers, SC1 and SC2, with the latter as the codominant marker. The two SSR markers were subsequently mapped to the A9/N9 linkage group of Brassica napus L. by comparing common SSR markers with the published genetic map of B. napus. A BLAST analysis indicated that the sequences of seven markers showed good colinearity with those of Arabidopsis chromosome 3 and that the homolog of the brown seed locus might exist between At3g14120 and At3g29615 on this same chromosome. To develop closer markers, we could make use of the sequence information of this region to design primers for future studies. Regardless, the close markers obtained in the present study will lay a solid foundation for cloning the yellow seed gene using a map-based cloning strategy.  相似文献   

16.
Seed coat color inheritance in B. rapa was studied in F(1), F(2), F(3), and BC(1) progenies from a cross of a Canadian brown-seeded variety 'SPAN' and a Bangladeshi yellow sarson variety 'BARI-6'. A pollen effect was found when the yellow sarson line was used as the maternal parent. Seed coat color segregated into brown, yellow-brown and bright yellow classes. Segregation was under digenic control where the brown or yellow-brown color was dominant over bright yellow seed coat color. A sequence related amplified polymorphism (SRAP) marker linked closely to a major seed coat color gene (Br1/br1) was developed. This dominant SRAP molecular marker was successfully converted into single nucleotide polymorphism (SNP) markers and sequence characterized amplification region (SCAR) markers after the extended flanking sequence of the SRAP was obtained with chromosome walking. In total, 24 SNPs were identified with more than 2-kb sequence. A 12-bp deletion allowed the development of a SCAR marker linked closely to the Br1 gene. Using the five-fluorescence dye set supplied by ABI, four labeled M13 primers were integrated with different SCAR primers to increase the throughput of SCAR marker detection. Using multiplexed SCAR markers targeting insertions and deletions in a genome shows great potential for marker assisted selection in plant breeding.  相似文献   

17.
Virus-induced gene silencing (VIGS) is a powerful tool for functional analysis of genes in plants. A wide-host-range VIGS vector, which was developed based on the Cucumber mosaic virus (CMV), was tested for its ability to silence endogenous genes involved in flavonoid biosynthesis in soybean. Symptomless infection was established using a pseudorecombinant virus, which enabled detection of specific changes in metabolite content by VIGS. It has been demonstrated that the yellow seed coat phenotype of various cultivated soybean lines that lack anthocyanin pigmentation is induced by natural degradation of chalcone synthase ( CHS ) mRNA. When soybean plants with brown seed coats were infected with a virus that contains the CHS gene sequence, the colour of the seed coats changed to yellow, which indicates that the naturally occurring RNA silencing is reproduced by VIGS. In addition, CHS VIGS consequently led to a decrease in isoflavone content in seeds. VIGS was also tested on the putative flavonoid 3'-hydroxylase ( F3'H ) gene in the pathway. This experiment resulted in a decrease in the content of quercetin relative to kaempferol in the upper leaves after viral infection, which suggests that the putative gene actually encodes the F3'H protein. In both experiments, a marked decrease in the target mRNA and accumulation of short interfering RNAs were detected, indicating that sequence-specific mRNA degradation was induced. The present report is a successful demonstration of the application of VIGS for genes involved in flavonoid biosynthesis in plants; the CMV-based VIGS system provides an efficient tool for functional analysis of soybean genes.  相似文献   

18.
Todd JJ  Vodkin LO 《The Plant cell》1996,8(4):687-699
Seed coat color in soybean is determined by four alleles of the classically defined / (inhibitor) locus that controls the presence or absence as well as the spatial distribution of anthocyanin pigments in the seed coat. By analyzing spontaneous mutations of the / locus, we demonstrated that the / locus is a region of chalcone synthase (CHS) gene duplications. Paradoxically, deletions of CHS gene sequences allow higher levels of CHS mRNAs and restore pigmentation to the seed coat. The unusual nature of the / locus suggests that its dominant alleles may represent naturally occurring examples of homology-dependent gene silencing and that the spontaneous deletions erase the gene-silencing phenomena. Specifically, mutations from the dominant ii allele (yellow seed coats with pigmented hila) to the recessive i allele (fully pigmented) can be associated with the absence of a 2.3-kb Hindlll fragment that carries CHS4, a member of the multigene CHS family. Seven independent mutations exhibit deletions in the CHS4 promoter region. The dominant / allele (yellow seed coats) exhibits an extra 12.1-kb Hindlll fragment that hybridizes with both the CHS coding region and CHS1 promoter-specific probes. Mutations of the dominant / allele to the recessive i allele (pigmented seed coats) give rise to 10.4- or 9.6-kb Hindlll CHS fragments that have lost the duplicated CHS1 promoter. Finally, gene expression analysis demonstrated that heterozygous plants (I/i) with yellow seed coats have reduced mRNA levels, indicating that the 12.1-kb Hindlll CHS fragment associated with the dominant / allele inhibits pigmentation in a trans-dominant manner. Moreover, CHS gene-specific expression in seed coats shows that multiple CHS genes are expressed in seed coats.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号