首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
主要介绍了一类基于荧光检测的新型细胞传感器,这类传感器利用免疫细胞表面分子特异性识别、结合抗原的特性和生物(或化学)发光技术,通过检测荧光信号在数分钟内达到检测病原体或其他抗原的目的.这类传感器的发光原理主要是利用钙离子敏感型化学荧光探针发光,如Fluo-4等,或钙离子敏感型发光蛋白发光,如水母发光蛋白、绿色荧光蛋白等.现在已经应用的主要是B细胞传感器和肥大细胞传感器.这类传感器具有灵敏度高、检测准确、反应速度快的优点.同时又存在交叉反应、细胞不易保存等不足之处.这类传感器在疾病诊断、环境监测、生物战剂检测等领域具有较大的应用前景.  相似文献   

2.
转移生长因子β(TGFβ)信号传导通路参与调节细胞的增殖、分化、凋亡、细胞迁移等一系列细胞过程,与骨代谢疾病的发病机制密切相关.本研究根据荧光共振能量转移(FRET)技术原理,构建包含CFP-TβRI-YFP融合蛋白的TβRI生物传感器,转染293T细胞,观察转染效率.以TGFβ1为诱导剂,激活TGFβ/TβRI信号传导通路,在活细胞生理条件下,动态监测TβRI生物传感器的FRET效应.结果表明,成功构建了TβRI生物传感器,转染细胞效率达50%,在TGFβ1诱导刺激6min后,FRET效率增加并达到最大值,该过程经历9 min后,随时间的延长,FRET效率下降.研究结果表明:在活细胞生理条件下,TGFβ1/TβRI信号转导过程存在一定的时间特异性.  相似文献   

3.
应用化学发光法标记技术分别对正常和临床慢性髓细胞性白血病(chronic myelogenous leukemia,CML)病人骨髓单个核细胞的RNA进行标记,然后与ABI的人全基因组表达谱芯片杂交,对于杂交后所得到的荧光信号数据,应用1700芯片分析系统对其进行生物信息学分析.实验结果表明,ABI1700芯片分析系统可以对基因芯片杂交后得到的差异表达基因进行疾病学分类和生物功能分类分析,同时还发现与CML相关的差异表达基因75个,因此ABI1700芯片分析系统在芯片研究领域中具有重要的应用价值.  相似文献   

4.
气体生物传感器是基于生物识别、生物转化及气体信号输出的传感器。近年来,由于气体生物传感器具有操作简单、灵敏度高、特异性好等特点,被应用于生物标志物、细胞、蛋白等靶物质的检测中。介绍了气体生物传感器的性质和分类,并分别阐述了蛋白酶介导的气体生物传感器、核酸酶介导的气体生物传感器、模拟酶介导的气体生物传感器和其他气体生物传感器的原理和应用,展望了气体生物传感器的检测手段和应用前景,为气体生物传感器的研究提供了参考。  相似文献   

5.
细胞生物物理学研究的概况及展望   总被引:1,自引:0,他引:1  
概括介绍了近几年来细胞生物物理学在细胞的精细结构研究、外界物理因素对细胞作用的研究、细胞运动的研究、细胞膜的离子通道、细胞的信号传递以及在研究方法等方面所取得的部分进展,并就如何实现细胞生物物理学的研究目标提出了自己的看法.  相似文献   

6.
《生命科学》2005,17(3):204-204
蛋白质芯片技术是一种新型蛋白质分析技术,具有集成、并行、快速和自动化分析的优势。多元光学蛋白质芯片传感器,仅需微量生理或生物采样,即可以同时检测、识别和纯化不同的生物分子和研究分子间的相互作用。无需标记,可以直接测量像血浆、细胞裂解液等生理样品。  相似文献   

7.
阵列生物传感器技术作为一种高通量、快速、选择性高和集成化的分析技术,已在基因组学和蛋白质组学的研究和药物筛选、环境分析,食品分析,临床诊断等领域中得到广泛的应用.阵列生物传感器主要有阵列光学生物传感器和阵列电化学生物传感器.阵列电化学生物传感器是将生物分子识别物质如酶、抗原/抗体、DNA等固定在阵列电极上,以阵列中每根电极产生的电化学信号作为检测信号的电化学分析器件.阵列电化学生物传感器以灵敏度高、分析速度快、选择性好、易于微型化和集成化以及仪器价格低廉等特点受到了研究工作者的极大关注.本文简单介绍了阵列电化学生物传感器的原理和特点,重点评述了2005年以来阵列电化学生物传感器在单组份检测和多组份同时检测两方面的研究进展,简单讨论了阵列电化学生物传感器研究中存在的问题.  相似文献   

8.
固定化生物催化剂的研究动向   总被引:4,自引:0,他引:4  
近年来,国内外对于固定化酶、固定化细胞、固定化细胞器以及生物传感器的研究很活跃,在固定化方法上取得了较大进展,一部分固定化酶、固定化微生物细胞以及生物传感器在食品发酵工业、有机合成工业、化学分析、临床诊断以及能源开发等方面得到了应用。目前,大多数固定化酶、固定化细胞以及生物传感器还处在实验室研究阶段或中试阶段,有待改进;动物细胞、植物细胞以及细胞器的固定化研究还处于探索阶段、有待深入。  相似文献   

9.
全细胞生物传感器是一种以微生物全细胞为敏感元件,可以快速感应环境中的毒性物质及污染物的装置。因其具有响应快、体积小、成本低、可实现原位监测等优势,在环境监测、药品研发、食品工业等领域显示出巨大潜力。综述了全细胞生物传感器的原理、分类及其在环境污染物监测领域的应用进展等,并对其未来的发展趋势进行了展望,以期为全细胞生物传感器的开发与利用提供参考。  相似文献   

10.
生物传感器应用于食源性致病菌检测研究进展   总被引:2,自引:0,他引:2  
生物传感器技术是一种由生物、化学、物理、医学、电子技术等多种学科互相渗透形成起来的高新微量分析技术,具有选择性好、灵敏度高、分析速度快、成本低、能在复杂的体系中进行在线连续监测的特点.本文根据生物传感器的分子识别元件将生物传感器分为DNA传感器、免疫传感器、细胞传感器三大类,简要介绍各种生物传感器的原理及其在检测食源性致病菌方面的应用情况,并对未来生物传感器应用于实际检测进行了展望.  相似文献   

11.
Bio-cell chip is a chip that has hundreds of types of cells arrayed and immobilized on a small slide. To elucidate the role of deletion of the p16 gene in hematologic malignancies, the bio-cell chip technique was applied to fluorescent in situ hybridization (FISH) study. We made a bio-cell chip with bone marrow specimen from 109 patients with acute lymphoblastic leukemia (ALL), 102 patients with acute myelogenous leukemia (AML), 47 patients with chronic myelogenous leukemia (CML), and 25 patients with multiple myeloma (MM). A glass slide with 96 separated areas was fabricated, onto which was added methanol/acetic acid fixed cell suspensions for high-throughput FISH for p16. With the successful application of bio-cell chip technique, we found that the deletion of p16 contributed to the oncogenesis in acute leukemia, but not in chronic leukemia. In conclusion, the bio-cell chip, a cell version of ultrahigh-throughput technology, was successfully applied to the FISH study, which can be utilized efficiently in the molecular cytogenetic investigation of hematologic malignancies.  相似文献   

12.
We report a novel technique for assessing cell proliferation that employs integrated capacitance sensors for monitoring the growth of anchorage-dependent living cells. The sensors measure substrate coupling capacitances of cells cultured on-chip in a standard in vitro environment. The biophysical phenomenon underlying the capacitive behavior of cells is the counterionic polarization around the insulating cell bodies when exposed to weak, low frequency electric fields. The sensors employ charge sharing for mapping sensed capacitance values in the fF range to output voltage signals. The sensor chip has been fabricated in a commercially available 0.5microm, 2-poly 3-metal CMOS technology. We report experimental results demonstrating sensor response to the adhesion of MDA-MB-231 breast cancer cells followed by their proliferation on the chip surface. On-chip capacitance sensing offers a non-invasive, label-free, easy-to-use, miniaturized technique with real-time monitoring capability for tracking cell proliferation in vitro.  相似文献   

13.
In this study, a direct detection system for herbicides inhibiting photosynthetic electron transfer was developed using the photosynthetic reaction center (RC) from the purple bacterium, Rhodobacter sphaeroides, and surface plasmon resonance (SPR) apparatus. The heavy-subunit-histidine-tagged RCs (HHisRCs) were immobilized on an SPR sensor chip via nickel chelation chemistry as a binder for one of the triazine herbicides, atrazine. Immediately after injection of atrazine solution on the HHisRCs-immobilized chip, the SPR responses increased and reached plateaus within 1 min. The SPR signals were proportional to the sample concentrations of atrazine in the range 1-100 microg/ml. To evaluate the binding specificity to atrazine, chlorinated aromatic herbicides, DCMU and MCPP, were investigated using the HHisRCs-immobilized chip. An RC inhibitor, DCMU, could also be detected with a higher detection limit of 20 microg/ml than atrazine (1 microg/ml). MCPP showed no signals because its inhibition mechanism against plants is different from that of atrazine and DCMU. These results indicated that the sensor chip immobilized RCs could be used for the specific detection of photosynthetic inhibitors.  相似文献   

14.
Heterogeneity of cellular systems has been widely recognized but only recently have tools become available that allow probing of genes and proteins in single cells to understand it. While the advancement in single cell genomic analysis has been greatly aided by the power of amplification techniques (e.g. PCR), analysis of proteins in single cells has proven to be more challenging. However, recent advances in multi-parameter flow cytometry, microscopy, microfluidics and other techniques have made it possible to measure wide variety of proteins in single cells. In this review, we highlight key recent developments in analysis of proteins in a single cell (excluding imaging-based methods), and discuss their significance in biological research.  相似文献   

15.
Liu Q  Ye W  Hu N  Cai H  Yu H  Wang P 《Biosensors & bioelectronics》2010,26(4):1672-1678
Olfactory systems of human beings and animals have the abilities to sense and distinguish varieties of odors. In this study, a bioelectronic nose was constructed by fixing biological tissues onto the surface of light-addressable potentiometric sensor (LAPS) to mimic human olfaction and realize odor differentiation. The odorant induced potentials on tissue-semiconductor interface was analyzed by sensory transduction theory and sheet conductor model. The extracellular potentials of the receptor cells in the olfactory epithelium were detected by LAPS. Being stimulated by different odorants, such as acetic acid and butanedione, olfactory epithelium activities were analyzed on basis of local field potentials and presented different firing modes. The signals fired in different odorants could be distinguished into different clusters by principal component analysis (PCA). Therefore, with cellular populations well preserved, the epithelium tissue and LAPS hybrid system will be a promising neuron chip of olfactory biosensors for odor detecting.  相似文献   

16.
A new integrated optical and electrochemical sensor system for simultaneous monitoring of intra- and extracellular superoxide (O(2)(-)) was developed using an array-based cell chip. For in vitro assays, A172 human glioblastoma cells were transferred into the cell chip and stimulated by phorbol 12-myristate 13-acetate (PMA). Intracellular O(2)(-) generation was detected via fluorescence image analysis with a dye probe, dihydrorhodamine 123 (DHR 123). Extracellular O(2)(-) was detected using an amperometric sensor constructed by immobilisation of cytochrome c using a binder, 3,3'-dithiobis(sulphosuccinimidylpropionate), to attach the redox protein onto the surface of electrodeposited Au electrodes incorporated into the optically transparent cell chip. The simultaneous intra- and extracellular production of O(2)(-) was successfully observed from PMA-stimulated A172 cells and inhibited by superoxide dismutase (SOD). The quantification of O(2)(-) concentration based on a mathematical model study and possible applications using the sensor system developed were discussed. The results confirm that there was no detectable interference or crosstalk between the optical and electrochemical assays. Feasibility of the integration of the two methods, optical and electrochemical, and the neutralisation of the intra- and extracellular O(2)(-) levels by SOD have been demonstrated.  相似文献   

17.
高时空分辨的脑功能光学成像研究进展   总被引:1,自引:0,他引:1  
脑功能成像技术对深入分析脑的信息加工过程,揭示脑的高级功能至关重要,是目前国际研究热点,已经在神经科学研究和神经系统疾病的临床诊断方面取得了很大的进展.已有脑功能成像技术如:功能磁共振成像(fMRI)、正电子断层成像(PET)、脑电图(EEG)、脑磁图(MEG)等等,虽然已被成功用于脑功能研究,但是目前这些方法也存在着时间或空间分辨率不够的局限.比较而言,光学成像方法表现出其独特魅力.激光散斑衬比成像和内源信号光学成像由于能提供空间取样、时间分辨率及空间分辨率三者的最佳组合和不需加入外源性标记物等特点,与其他脑功能成像技术相比其优势可能更为突出.具有较高的时间和空间分辨率的这两种脑功能光学成像技术及其应用都取得了重大发展,成为研究脑皮层功能构筑和脑病理生理的有力工具.但是目前这两种成像方法也面临着一些挑战.  相似文献   

18.
The feasibility of buffer exchange in biosensor chip mass spectrometry, along with the construction of base sensor chips and use of alternative chip chemistries, is demonstrated in this work. Beta-2-microglobulin (beta2m) was used as an analyte and captured in the first flow cell (FC1) on the sensor chip surface by an immobilized anti-beta2m antibody. Low pH buffer was then used to elute the captured analyte from the flow cell and route it to a second flow cell (FC2) downstream that served as a cation exchanger that retains the analyte. Following additional washes in FC1, the analyte present in FC2 was either eluted with a higher pH buffer (to demonstrate the possibility of elution into a downstream trypsin flow cell), or it was subjected to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis to verify its presence in FC2. In a separate experiment, a gold-sputtered glass slide (base chip) was activated through a formation of 11-mercaptoundecanoic acid self-assembled monolayer and via reaction with 1,1"-carbonyldiimidazole. The activated chip was placed manually into the biosensor and two surfaces (flow cells) were derivatized with antibodies to beta2m and cystatin C (cysC). To evaluate the chip performance, diluted human urine aliquot was injected over the flow cells. Following the surface plasmon resonance analysis, the chip was MALDI-TOF MS analyzed, yielding signals from beta2m and cysC from their respective flow cells. Artifacts arising from the surface chemistries were not observed in the analysis.  相似文献   

19.
There have been many trials to visualize smell using various techniques in order to objectively express the smell because information obtained from the sense of smell in human is very subjective. So far, well-trained experts such as a perfumer, complex and large-scale equipment such as GC-MS, and an electronic nose have played major roles in objectively detecting and recognizing odors. Recently, an optoelectronic nose was developed to achieve this purpose, but some limitations regarding the sensitivity and the number of smells that can be visualized still persist. Since the elucidation of the olfactory mechanism, numerous researches have been accomplished for the development of a sensing device by mimicking human olfactory system. Engineered olfactory cells were constructed to mimic the human olfactory system, and the use of engineered olfactory cells for smell visualization has been attempted with the use of various methods such as calcium imaging, CRE reporter assay, BRET, and membrane potential assay; however, it is not easy to consistently control the condition of cells and it is impossible to detect low odorant concentration. Recently, the bioelectronic nose was developed, and much improved along with the improvement of nano-biotechnology. The bioelectronic nose consists of the following two parts: primary transducer and secondary transducer. Biological materials as a primary transducer improved the selectivity of the sensor, and nanomaterials as a secondary transducer increased the sensitivity. Especially, the bioelectronic noses using various nanomaterials combined with human olfactory receptors or nanovesicles derived from engineered olfactory cells have a potential which can detect almost all of the smells recognized by human because an engineered olfactory cell might be able to express any human olfactory receptor as well as can mimic human olfactory system. Therefore, bioelectronic nose will be a potent tool for smell visualization, but only if two technologies are completed. First, a multi-channel array-sensing system has to be applied for the integration of all of the olfactory receptors into a single chip for mimicking the performance of human nose. Second, the processing technique of the multi-channel system signals should be simultaneously established with the conversion of the signals to visual images. With the use of this latest sensing technology, the realization of a proper smell-visualization technology is expected in the near future.  相似文献   

20.
The purpose of this editorial is to highlight recent developments in molecular biology tools and techniques in stem cell research and their applications to human diseases. Recent advancements in stem cell research and regenerative medicine are offering immense hope to cure human diseases and injuries, such as cancer, diabetes, Alzheimer's disease, Parkinson's disease, and traumatic brain injuries. In the last three decades, especially in the last decade, major breakthroughs have been seen in the conversion of adult stem cells into induced pluripotent stem cells, which in turn has led the way to developing stem cell therapies for human diseases. This article summarizes contributions of research into stem cell therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号