首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
女性怀孕前后饮酒会对胎儿的发育及神经系统造成不利影响,称为“胎儿酒精综合征”(fetal alcohol spectrum disorders,FASD)。小鼠通常作为研究该病的动物模型。该实验采用体外培养技术及体内冲胚法研究雌鼠怀孕前后酒精摄入对各期植入前胚胎全基因组DNAT基化模式建立的影响。小鼠植入前胚胎体外培养实验发现,体外实验组I(怀孕前酒精处理组1,除8-cell外,其他各期胚胎的DNA甲基化水平明显低于体外对照组;体外实验组II(正常胚胎在含乙醇的培养基中培养),各期植入前胚胎DNA甲基化水平均明显低于体外对照组。体内实验发现,体内实验组I(怀孕前酒精处理组)与体内的实验组II(怀孕后酒精处理组),各期植入前胚胎DNA甲基化水平明显低于体内对照组。体内、外实验结果表明:受精前后酒精对各期植入前胚胎DNA甲基化模式的正确建立造成紊乱,该结果可为进一步揭示FSAD发病机制提供一定的实验基础。  相似文献   

2.
利用小鼠抗5-甲基胞嘧啶(5MeC)单克隆抗体检测了体外培养小鼠四倍体早期胚胎的基因组甲基化模式。结果表明: 利用电融合方法制备的小鼠四倍体胚胎在体外培养体系中经历细胞质融合、细胞核融合及细胞继续分裂发育直到囊胚期的过程, 在细胞质融合的时候胚胎卵裂球同体内体外培养二倍体胚胎一样, 呈现高度甲基化状态; 在细胞核开始融合的时候, 甲基化水平急速下降, 在细胞核完全融合的时候甲基化水平达到最低点; 随着胚胎继续分裂, 胚胎甲基化水平逐渐增加, 在桑葚胚期甲基化水平最高; 但是囊胚期四倍体胚胎内细胞团同滋养层细胞甲基化荧光信号没有差别, 这与体内体外培养二倍体囊胚内细胞团细胞甲基化荧光强度高于滋养层细胞甲基化荧光强度不同。因此, 小鼠体外培养四倍体胚胎的甲基化模式是不正常的, 这可能是四倍体小鼠难以发育到妊娠足月的原因之一。这是对小鼠四倍体早期胚胎基因组甲基化模式的首次报道。  相似文献   

3.
利用抗5-甲基胞嘧啶(5MeC)抗体免疫荧光法检测了体外成熟(IVM)、体外受精(IVF)和体外培养(IVC)的牛合子及早期胚胎的基因组甲基化模式. 实验结果表明: 有61.5%的合子发生了雄原核去甲基化, 而34.6%的合子没有发生去甲基化; 当胚胎发育到8-细胞时, 甲基化水平明显下降, 且一直到桑椹胚期仍维持低甲基化状态, 但同一枚胚胎的不同卵裂球之间甲基化水平不同; 在囊胚期, 内细胞团细胞的甲基化水平很低, 而滋养层细胞的甲基化水平却很高. 本研究结果至少部分地提示, IVM/IVF/IVC可能对牛合子及早期胚胎的甲基化模式有一定影响.  相似文献   

4.
为了考察小鼠(Mus musculus)孤雌激活胚胎H3K27三甲基化模式与体内正常胚胎之间的差异,以及曲古抑菌素A(TSA)对孤雌胚H3K27三甲基化水平的影响,探究表观遗传修饰对孤雌胚胎发育的作用。首先,用H3K27me3特异性抗体对MⅡ期卵母细胞染色,利用激光共聚焦对其荧光强度进行检测,结果发现该时期的甲基化荧光强度相对较低。接着,采用同样的方法对小鼠孤雌胚胎和体内正常胚胎植入前各时期的H3K27me3模式进行比较,结果显示,从2-细胞到囊胚期孤雌组呈现逐渐升高的趋势,与体内组变化趋势完全相反,且总体平均荧光强度较体内组普遍偏低。孤雌胚胎经TSA处理后,处理组和未处理组在前三个时期虽然没有显著性差异(P0.05),但是处理之后的H3K27三甲基化水平有所提高,囊胚期与未处理组相比有显著性差异(P0.05)。以上结果表明,小鼠孤雌胚胎的H3K27三甲基化模式与体内胚胎之间存在着巨大的差异,这可能是造成孤雌胚胎发育能力差的重要原因之一。TSA处理对H3K27me3模式造成了一定的影响,使体外培养环境有所改善,这可能对提高孤雌胚胎发育能力具有一定的意义。  相似文献   

5.
陈利  丁芳  刘勇  吴风瑞  丁彪  王荣  李文雍 《遗传》2015,(1):77-83
孤雌胚胎的发育率比体内体外生成胚胎的发育率要慢,为研究小鼠孤雌胚、体外培养胚H3K9乙酰化(H3K9ac)模式与体内自然胚之间的差异、曲古抑菌素A(Trichostatin,TSA)对孤雌胚H3K9乙酰化模式的影响及表观遗传模式对孤雌胚、体外培养胚发育的影响,文章采用间接免疫荧光法对小鼠植入前各时期孤雌胚、体外培养胚及体内自然胚基因组组蛋白的H3K9乙酰化水平进行检测。结果显示,植入前各时期孤雌胚H3K9乙酰化模式与体内组变化趋势基本一致,但平均荧光强度较体内组普遍偏高;经TSA处理后孤雌胚H3K9乙酰化水平有所提高,原核期至8-细胞期差异显著(P0.05)。体外培养胚H3K9乙酰化荧光强度与体内组变化趋势也基本一致,但平均荧光强度较体内组普遍偏低。以上结果表明,小鼠孤雌胚H3K9乙酰化水平高于体内胚,使植入前胚胎发育过程中本应沉默的基因启动子发生超乙酰化,进而抑制胚胎发育,这可能是造成孤雌胚胎发育能力较差的重要原因之一;TSA处理可以部分弥补体外培养环境对胚胎发育带来的伤害,但TSA提高孤雌胚的发育能力可能并不完全是通过改变H3K9乙酰化水平来实现的。  相似文献   

6.
胚胎密闭培养是空间胚胎发育研究的基本条件.本文主要研究密闭培养条件对小鼠早期胚胎发育过程中印迹基因Igf2/H19的印迹调控区(ICR)甲基化水平的影响.应用亚硫酸氢盐测序法(BSP)分析小鼠2-细胞胚胎在密闭条件下分别培养24h、48h和72h后,相对应的发育阶段胚胎Igf2/H19的ICR甲基化水平,以常规体外培养和体内发育的各阶段胚胎为对照.结果显示,密闭培养条件下,小鼠8-细胞胚胎、桑葚胚和囊胚的Igf2/H19的ICR甲基化水平都低于常规体外培养的结果,且更明显低于体内发育的结果;同时发现,小鼠8-细胞胚胎密闭培养时,Igf2/H19的ICR甲基化水平最低.由此可见,密闭培养会引起小鼠植入前各发育阶段胚胎Igf2/H19的ICR甲基化水平降低,并证明Igf2/H19的ICR甲基化水平可以作为监测哺乳动物早期胚胎发育状况的分子指标.  相似文献   

7.
目的考察小鼠孤雌胚胎H3K27乙酰化模式与体内胚胎的差异,探究表观遗传模式对孤雌胚发育的影响。方法利用SrCl2激活卵母细胞,获得植入前各时期孤雌胚胎,并统计胚胎发育率;小鼠注射孕马血清激素(Pregnant Mare Serum Gonadotrophin,PMSG)和人绒毛膜促性腺激素(Human Chorionic Gonadotropin,hCG)超排后合笼,在不同发育时间采用体内冲胚的方法获得体内各时期胚胎;将获得的各期各类胚胎用H3K27乙酰化抗体与特异性位点结合,与连接有FITC荧光基团的二抗共同孵育,利用激光共聚焦显微镜检测荧光强度,获得小鼠植入前各时期孤雌胚和体内胚组蛋白H3K27乙酰化模式。结果用SrCl2激活成熟卵母细胞得到的孤雌胚的激活率和囊胚率分别为96.39%和69.54%,处于正常发育水平;孤雌胚H3K27乙酰化荧光强度从原核期相对较高的水平逐渐降低,2-细胞、4-细胞和8-细胞时期荧光强度都处于较低水平,到桑葚胚时期又突然升高,总体变化趋势和体内组先降低后升高的整体趋势一样,且原核期至8-细胞时期的荧光值孤雌胚高于体内胚,桑囊胚时期则相反;两组的H3K27乙酰化荧光强度值在原核期和桑葚胚时期差异不显著(P>0.05),在2-细胞、4-细胞、8-细胞和囊胚期差异显著(P<0.01)。结论本研究表明小鼠孤雌胚H3K27乙酰化模式与体内胚的模式存在差异,可能是影响孤雌胚发育能力的重要原因之一。进一步的深入研究将对纠正小鼠孤雌胚乙酰化模式和提高孤雌胚发育能力具有重要意义。  相似文献   

8.
为探讨小鼠植入前胚胎组蛋白乙酰化酶GCN5(general control of nucleotide synthesis,GCN5) 和组蛋白去乙酰化酶1(histone deacetyluse1,HDAC1)的表达模式及常规体外培养对它们表达的影响,应用荧光免疫细胞化学技术,检测了体内和体外培养的小鼠2、4、8细胞期卵裂胚胎、桑葚胚和囊胚GCN5和HDAC1的表达。结果显示,GCN5在体内组各细胞期卵裂胚胎和桑葚胚的细胞浆内均呈高表达,细胞核内未见明显表达,而囊胚细胞的细胞浆和细胞核内均无表达:HDAC1在体内组小鼠2细胞期胚胎中以细胞浆内表达为主,在其他各期胚胎均以细胞核内表达为主.囊胚期内细胞团部分细胞的细胞核内未见HDAC1表达。GCN5在体外组小鼠植入前各期胚胎均不表达,而 HDAC1的表达强度明显低于体内组的。提示体外培养抑制小鼠植入前胚胎GCN5和明显降低 HDAC1的表达,影响胚胎基因的正确性表达。  相似文献   

9.
为探讨小鼠植入前胚胎组蛋白乙酰化酶GCN5(general control of nucleotide synthesis,GCN5)和组蛋白去乙酰化酶1(histone deacetylasel,HDAC1)的表达模式及常规体外培养对它们表达的影响,应用荧光免疫细胞化学技术,检测了体内和体外培养的小鼠2、4、8细胞期卵裂胚胎、桑葚胚和囊胚GCN5和HDAC1的表达。结果显示,GCN5在体内组各细胞期卵裂胚胎和桑葚胚的细胞浆内均呈高表达,细胞核内未见明显表达,而囊胚细胞的细胞浆和细胞核内均无表达:HDACl在体内组小鼠2细胞期胚胎中以细胞浆内表达为主,在其他各期胚胎均以细胞核内表达为主。囊胚期内细胞团部分细胞的细胞核内未见HDAC1表达。GCN5在体外组小鼠植入前各期胚胎均不表达。而HDAC1的表达强度明显低于体内组的。提示体外培养抑制小鼠植入前胚胎GCN5和明显降低HDAC1的表达,影响胚胎基因的正确性表达。  相似文献   

10.
本实验以昆明小鼠为实验对象,CZB为基础培养液,在其中分别添加不同浓度的三种抗氧化剂-槲皮素(quercetin)、维生素C和维生素E,比较它们对小鼠体内受精1-细胞胚胎体外发育的影响,测定其克服小鼠胚胎体外发育阻滞、促进胚胎发育的最佳浓度。然后将三种抗氧化剂分别加入体外受精胚胎培养液中,观察三种抗氧化剂对小鼠体外受精胚胎发育的作用,  相似文献   

11.
Histone modifications are thought to play important roles in various cellular functions. In this article, the distribution patterns of acetylation on histone H4, methylation on histone H3 lysine 9, and phosphorylation on histone H3 serine 10 were examined in in vivo and in vitro fertilization (IVF) preimplantation mouse embryos by using indirect immunofluorescence and scanning confocal microscopy. We desired to know whether the IVF, which has been widely used as a routine assisted reproductive technology in animal and human, was safe at the epigenetic level. As results, we found that there was no difference in these histone modification patterns in in vivo and IVF mouse embryos from zygote to blastocyst stage. Moreover, these histone modifications had different distributions at all examined stages, but they were consistent with the mouse embryo developmental stages.  相似文献   

12.
By using the approach of immunofluorescence staining with an antibody against 5-methylcytosine (5MeC), the present study detected the DNA methylation patterns of bovine zygotes and preimplantation embryos derived from oocyte in vitro maturation (IVM), in vitro fertilization (IVF) and embryo in vitro culture (IVC). The results showed that: a) paternal-specific demethylation occurred in 61.5% of the examined zygotes, while 34.6% of them showed no demethylation; b) decreased methylation level was observed after the 8-cell stage and persisted through the morula stage, however methylation levels were different between blastomeres within the same embryos; c) at the blastocyst stage, the methylation level was very low in inner cell mass, but high in trophectoderm cells. The present study suggests, at least partly, that IVM/IVF/IVC may have effects on DNA methylation reprogramming of bovine zygotes and early embryos.  相似文献   

13.
By using the approach of immunofluorescence staining with an antibody against 5-methylcytosine (5MeC), the present study detected the DNA methylation patterns of bovine zygotes and preimplantation embryos derived from oocyte in vitro maturation (IVM), in vitro fertilization (IVF) and embryo in vitro culture (IVC). The results showed that: a) paternal-specific demethylation occurred in 61.5% of the examined zygotes, while 34.6% of them showed no demethylation; b) decreased methylation level was observed after the 8-cell stage and persisted through the morula stage, however methylation levels were different between blastomeres within the same embryos; c) at the blastocyst stage, the methylation level was very low in inner cell mass, but high in trophectoderm cells. The present study suggests, at least partly, that IVM/IVF/IVC may have effects on DNA methylation reprogramming of bovine zygotes and early embryos. Supported by the National Natural Science Foundation of China (Grant No. 30270956) and High-Tech Research & Development Program of China (Grant No. 2002AA206311)  相似文献   

14.
Proper epigenetic modifications during preimplantation embryo development are important for a successful pregnancy. We aim to investigate the putative influence of in vitro fertilization (IVF) and vitrification on DNA methylation in mouse preimplantation embryos. The study groups consisted of blastocyst-derived vitrified two-cell embryos, nonvitrified embryos, and a control group of in vivo derived blastocysts. We assessed developmental competence, global DNA methylation, relative expression levels of miR-29a/29b, and their target genes, Dnmt3a/3b. Vitrified embryos had a lower developmental rate as compared with nonvitrified embryos. There was no significant decrease in blastocyst cell numbers among studied groups, whereas there was a steady decline in DNA methylation after IVF and vitrification. The levels of miR-29a/29b upregulated in the experimental groups as compared with the control group. IVF and vitrification caused Dnmt3a/3b downregulations in blastocysts. The results of this study have suggested that a relationship exists between IVF and embryo vitrification with methylation interruptions in the blastocysts.  相似文献   

15.
The fertilized mouse egg actively demethylates the paternal genome within a few hours after fertilization, whereas the maternal genome is only passively demethylated by a replication-dependent mechanism after the two-cell stage. This evolutionarily conserved assymetry in the early diploid mammalian embryo may have a role in methylation reprogramming of the two very different sets of sperm and egg chromatin for somatic development and formation of totipotent cells. Immunofluorescence staining with an antibody against 5-methylcytosine (MeC) showed that the incidence of abnormal methylation patterns differs between mouse two-cell embryos from superovulated females, nonsuperovulated matings, and in vitro fertilization (IVF). It also depends on embryo culture conditions and genetic background. In general, there was a good correlation with the number of embryos (from the same experiment) which did not develop in vitro up to the blastocyst stage. Thus, aberrant genome-wide DNA methylation in early embryos may be an important mechanism contributing to the high incidence of developmental failure in mammals. Similar to the situation in abnormally methylated embryos from nuclear transfer, it may cause a high incidence of pregnancy loss and abnormal phenotypes.  相似文献   

16.
17.
18.
Virtually all mammalian species including mouse, rat, pig, cow, and human, but not sheep and rabbit, undergo genome-wide epigenetic reprogramming by demethylation of the male pronucleus in early preimplantation development. In this study, we have investigated and compared the dynamics of DNA demethylation in preimplantation mouse and rat embryos by immunofluorescence staining with an antibody against 5-methylcytosine. We performed for the first time a detailed analysis of demethylation kinetics of early rat preimplantation embryos and have shown that active demethylation of the male pronucleus in rat zygotes proceeds with a slower kinetic than that in mouse embryos. Using dated mating we found that equally methylated male and female pronuclei were observed at 3 hr after copulation for mouse and 6 hr for rat embryos. However, a difference in methylation levels between male and female pronuclei could be observed already at 8 hr after copulation in mouse and 10 hr in rat. At 10 hr after copulation, mouse male pronuclei were completely demethylated, whereas rat zygotes at 16 hr after copulation still exhibited detectable methylation of the male pronucleus. In addition in both species, a higher DNA methylation level was found in embryos developed in vitro compared to in vivo, which may be one of the possible reasons for the described aberrations in embryonic gene expression after in vitro embryo manipulation and culture.  相似文献   

19.
Until now, no primate animals have been successfully cloned to birth with somatic cell nuclear transfer (SCNT) procedures, and little is known about the molecular events that occurred in the reconstructed embryos during preimplantation development. In many SCNT cases, epigenetic reprogramming of the donor nuclei after transfer into enucleated oocytes was hypothesized to be crucial to the reestablishment of embryonic totipotency. In the present study, we focused on two major epigenetic marks, DNA methylation and histone H3 lysine 9 (H3K9) acetylation, which we examined by indirect immunofluorescence and confocal laser scanning microscopy. During preimplantation development, 67% of two-cell- and 50% of eight-cell-cloned embryos showed higher DNA methylation levels than their in vitro fertilization (IVF) counterparts, which undergo gradual demethylation until the early morula stage. Moreover, whereas an asymmetric distribution of DNA methylation was established in an IVF blastocysts with a lower methylation level in the inner cell mass (ICM) than in the trophectoderm, in most cloned blastocysts, ICM cells maintained a high degree of methylation. Finally, two donor cell lines (S11 and S1-04) that showed a higher level of H3K9 acetylation supported more blastocyst formation after nuclear transfer than the other cell line (S1-03), with a relatively low level of acetylation staining. In conclusion, we propose that abnormal DNA methylation patterns contribute to the poor quality of cloned preimplantation embryos and may be one of the obstacles to successful cloning in primates.  相似文献   

20.
Accurate reprogramming of DNA methylation occurring in preimplantation embryos is critical for normal development of both fetus and placenta. Environmental stresses imposed on oocytes usually cause the abnormal DNA methylation reprogramming of early embryos. However, whether oocyte vitrification alters the reprogramming of DNA methylation (5 mC) and its derivatives in mouse preimplantation embryo development remains largely unknown. Here, we found that the rate of cleavage and blastocyst formation of embryos produced by IVF of vitrified matured oocytes was significantly lower than that in control counterparts, but the quality of blastocysts was not impaired by oocyte vitrification. Additionally, although vitrification neither altered the dynamic changes of 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5 fC) before 4-cell stage nor affected the levels of 5 mC and 5-carboxylcytosine (5caC) throughout the preimplantation development, vitrification significantly reduced the levels of 5hmC and 5 fC from 8-cell stage onwards. Correspondingly, vitrification did not alter the expression patterns of Tet3 in preimplantation embryos but apparently reduced the expression levels of Tet1 in 4-cell and 8-cell embryos and increased the expression levels of Tet2 at morula stage. Taken together, these results demonstrate that oocyte vitrification perturbs DNA methylation reprogramming in mouse preimplantation embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号