首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
针对CO2阶跃变化下茄子光合的振荡动态现象,采用CO2阶跃起点(Cal)和阶点(Ca2)处理,以及不周光照水平(PAR)下的CO2阶跃处理,结合光合系统反馈控制动态生化模型中传递函数的振荡单元,分析了茄子动态光合的振荡特征参数.通过稳态光合参数,将茄子光合速率(Pn)转化为羧化速率(Vc)的动态进程,发现在较低的CO2...  相似文献   

2.
在红光LED频闪光照射下,采用光合测定系统(CIRAS-2)和光纤光谱仪(QE65),同步测定了闪光频率下番茄叶片的净光合速率Pn、气孔导度Gs、胞间二氧化碳浓度Ci和叶绿素荧光信号F的动态响应。随着闪光频率从0.01 Hz向10.00 Hz增加,Pn振荡幅度减小,至0.25 Hz以上时Pn振荡幅度不显著;光合光能转化效率LCE'逐渐上升至0.25 Hz以上时达最大;与光系统Ⅱ光化学活性的初级醌受体暗期再氧化程度或光期再还原程度有关的光脉冲荧光相对变化量Fpcr也从较高水平迅速下降,至0.12 Hz时达最低值,之后较快回升,至0.50 Hz以上趋稳并接近于中等水平,显示出ATP池和NADPH池的较强缓冲能力。频闪光的光期Gs始终维持在较高水平,对外界CO2进入胞间的Ci无显著影响。而频闪光的光→暗期间的光后光合碳吸收衰减或暗→光期间的暗后光合碳吸收再启动过程的相对同化负荷变化量ΔACr在0.10 Hz以上衰减趋0,暗示着核酮糖-1,5-二磷酸(ribulose-1,5-bisphosphate,RuBP)的消耗与再生趋于平衡状态,呈现出较强的RuBP池的缓冲能力。综合分析表明,频闪光下,ATP池、NADPH池和RuBP池呈现出的联合缓冲能力,对光后暗期或暗后光期RuBP的持续再生或再生恢复均有维持效应,从而增加闪光频率即相应缩短暗期和光期,致使光合碳吸收Pn的暗期下降幅度减小和光期上升幅度减少,呈现Pn振荡幅度减小至趋稳的现象。  相似文献   

3.
核酮糖1.5一二磷酸羧化酶一氧合酶(Ribulosel,5-bisphosphate carboxylase-oxygenase,E.C.1.1.1.39,缩写为Rubisco)催化核酮糖二磷酸(RuBP)的羧化反应和氧合反应(oxygenation):  相似文献   

4.
大豆叶片RuBP含量测定及其应用   总被引:1,自引:0,他引:1  
RuBP(1,5-二磷酸核酮糖)是植物光合碳代谢的重要中间产物。经RuBPCase/Oase的催化,RuBP可与CO_2羧化,行光合碳还原途径(C_3环);也可与O_2作用,行光合碳氧化循环(C_2环)。植物光合器官中RuBP含量可调节和影响光合,光呼吸的强弱,改变Calvin循环的运转状况。因此,测定植物光合器官中的RuBP含量在光合与光呼吸研究中具有重要意义。  相似文献   

5.
核酮糖1,5—二磷酸羧化酶—加氧酶(RuBPCase—Oase)是植物叶绿体中最丰富的蛋白质,它有两种催化功能:在CO_2分压高时,使1,5—二磷酸核酮糖(RuBP)羧化,产生2分子的3—磷酸甘油酸(PGA);而在O_2分压高时,使RuBP加氧,产生1分子PGA和1分子2—磷酸乙醇酸(光呼吸的主要底物),反应如下:  相似文献   

6.
光合CO_2的固定受二磷酸核酮糖羧化酶加氧酶(Rubis CO)活性的调节,而RubisCO的活性又决定于该酶活化形式酶~(-A)CO_2-Mg~(2 )-二磷酸核酮糖(E-~ACO_2-Mg~(2 )-RuBP)复合物的数量,羧基阿拉伯糖醇-1,5-二磷酸(CABP)是RuBP强有力的竞争  相似文献   

7.
碳酸氢钾对大豆幼苗光合作用的影响   总被引:1,自引:0,他引:1  
研究喷洒碳酸氢钾(KHCO3)对大豆幼苗叶片光合作用影响的结果表明,喷施KHCO3的大豆幼苗光合速率和核酮糖.1,5二磷酸羧化/氧化酶(Rubisco)羧化活性提高,加氧酶活性下降,PSI、PSII和光合电子传递速率均提高,光合色素含量也增加.  相似文献   

8.
针对植物光合与内外环境因子间的关系以及光合“午睡”现象中的气孔限制与非气孔限制问题,以温室茄子‘茄杂一号’为试材,对叶室温光组合方式下测定的净光合速率Pn对胞间CO2浓度Ci响应曲线,和人工增施CO2处理下测定的Pn日变化进程,进行了光合数学模型和Farquhar、von Caemmerer和Berry的光合生化动力学模型(简称为FvCB模型)模拟分析。采用美国思爱迪生态仪器有限公司的CI-301PS光合作用测定仪进行净光合速率(Pn)、光合有效辐射(PAR)、气温(Ta)、叶温(Tl)、环境二氧化碳浓度(Ca)、胞间二氧化碳浓度(Ci)和空气相对湿度(Hr)参数测定。其结果表明,无论是Pn对Ci的响应曲线还是光合日进程中,数学模型对Pn的拟合度明显优于为FvCB模型。因此,通过数学模型可以解析出光合日进程受单一环境因子(PAR、Ta、Ca、Hr)及其复合环境因子的综合影响。然而,FvCB模型模拟结果显示出,温光组合下受Rubisco(即RuBP羧化/加氧酶)数量与活性及动力学特性限制的羧化速率Ac、受RuBP(1,5-二磷酸核酮糖)再生限制的羧化速率Aj以及受TPU(磷酸丙糖)可利用量限制的羧化速率Ap对Ci响应的主控作用呈现交替变化趋势。其交替变化转折点胞间二氧化碳浓度Cicj在强光高温组合中较高,而在弱光低温组合中较低;同时还发现,Cicj和Cijp受叶温的影响强于光照。光合日进程中的FvCB模型模拟分析揭示出,早晨和傍晚弱光下为Aj限制时段;晴天上午和中午前后的充足日照下为Ac限制时段。多云和阴天下Aj的限制时段延长。增施CO2会延长Aj的限制时段,同时相应缩短Ac的限制时段;冬季2次增施CO2的出现了Ap限制时段。  相似文献   

9.
核酮糖-1,5-二磷酸(RuBP)羧化酶/加氧酶(RubisCO)是Calvin循环中的关键酶,也是地球上最丰富的酶,广泛地存在于一些原核生物、真核生物以及高等植物中.对原核生物RubisCO的结构、活化、动力学性质、基因结构表达与调节、基因工程等方面的最新进展作一综述.  相似文献   

10.
由Farquhar、von Caemmerer和Berry提出的生物化学光合模型(以下简称FvCB模型)是一个基于光合碳反应过程的CO_2响应模型。此模型认为C3植物叶片光合速率(A)由3个生物化学过程速率中的最低者——核酮糖-1,5-双磷酸羧化酶/加氧酶(Rubisco)所能支持的羧化速率、电子传递所能支持的核酮糖-1,5-双磷酸(Ru BP)再生速率和磷酸丙糖(TP)利用速率决定。利用改进的FvCB模型对光合速率-胞间CO_2浓度(A-C_i)曲线进行拟合,能有效地估计最大羧化速率、最大电子传递速率、TP利用速率、明呼吸速率、叶肉细胞导度等生化参数,促进我们对植物光合生理及其响应环境变化的理解和预测。该文首先详细地描述了FvCB模型,并分析了此模型分段性和过参数化的特点。然后介绍利用FvCB模型对A-C_i曲线进行拟合,从而估计叶片光合生化参数的研究进展。光合生化参数估计经历了主观分段、分段拟合到客观分段、整体拟合几个阶段,目标函数的最小化方法也从传统的最小二乘法为主转向基于现代计算机技术的迭代算法(如遗传算法、模拟退火算法)。然而,如要进一步提高参数估计的可靠性和精确性,还需加强Rubisco动力学属性和温度依赖性方面的研究。最后,为了获取能更有效地进行参数估计的光合数据,根据目前对FvCB模型拟合的认知,整合并改进了A-C_i曲线的测定方法。  相似文献   

11.
Ribulose-1,5-diphosphate oxygenase activity of ribulose-1,5-diphosphate carboxylase was completely inhibited by preincubation of the enzyme with 5mM hydroxylamine in presence of the substrate ribulose-1,5-diphosphate. Inhibition by hydroxylamine was uncompetitive with respect to ribulose-1,5-diphosphate and noncompetitive with respect to magnesium. Carboxylase activity was not affected by hydroxylamine. These results suggest that the two activities of the enzyme can be regulated differentially and that inhibiting the oxygenase activity does not stimulate the carboxylase activity of the enzyme. The data further suggest that the inhibition by hydroxylamine may be through its interaction with carbonyl groups of the enzyme exposed on the binding of ribulose-1,5-diphosphate to the protein.  相似文献   

12.
Enzyme levels in relation to obligate phototrophy in chlamydobotrys   总被引:3,自引:3,他引:0       下载免费PDF全文
During the transition from photoheterotrophic growth on acetate to phototrophic growth on carbon dioxide, there is a decrease in isocitrate lyase and increase in ribulose-1,5-diphosphate carboxylase activity in Chlamydobotrys stellata cultures. The increase in ribulose-1,5-diphosphate carboxylase activity is the result of protein synthesis, there being a close correlation between increase in enzyme activity and protein precipitated by antibody to ribulose-1,5-diphosphate carboxylase. The purified ribulose-1,5-diphosphate carboxylase was similar to the constitutive enzyme from other green algae having a molecular weight of 530,000 and composed of two types of subunit of molecular weight 53,000 and 14,000.  相似文献   

13.
Transient optical absorption bands are formed upon addition of ribulose-1,5-bisphosphate to the Co2+-activated ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach and parsley. In the visible region, the prominent absorption band during steady state has a maximum at 610 nm. Stopped-flow technique was used to study the increase in absorbance at this wavelength, and two distinct phases in the progress curve for the approach to steady-state absorbance were observed. The rates for these two phases, respectively, were similar to those found earlier for the two enzyme-Co2+-bound intermediates using EPR technique (Br?ndén et al. (1987) Biochim. Biophys. Acta 916, 298-303). It is therefore proposed that most of the transient optical absorption originates from an enzyme-Co2+-coordinated ribulose-1,5-bisphosphate molecule and an enzyme-Co2+-coordinated enediolate anion of it, where bound ribulose-1,5-bisphosphate appears first. Furthermore, the most rapid phase in the progress curve is a first-order reaction, independent of the ribulose-1,5-bisphosphate concentration. This indicates that the formation of enzyme-Co2+-coordinated ribulose-1,5-bisphosphate is preceeded by another reaction in which ribulose-1,5-bisphosphate binds to the enzyme, probably without metal coordination.  相似文献   

14.
Ribose-1,5-bisphosphate isomerase (R15Pi) is a novel enzyme recently identified as a member of an AMP metabolic pathway in archaea. The enzyme converts d-ribose 1,5-bisphosphate into ribulose 1,5-bisphosphate, providing the substrate for archaeal ribulose-1,5-bisphosphate carboxylase/oxygenases. We here report the crystal structures of R15Pi from Thermococcus kodakarensis KOD1 (Tk-R15Pi) with and without its substrate or product. Tk-R15Pi is a hexameric enzyme formed by the trimerization of dimer units. Biochemical analyses show that Tk-R15Pi only accepts the α-anomer of d-ribose 1,5-bisphosphate and that Cys(133) and Asp(202) residues are essential for ribulose 1,5-bisphosphate production. Comparison of the determined structures reveals that the unliganded and product-binding structures are in an open form, whereas the substrate-binding structure adopts a closed form, indicating domain movement upon substrate binding. The conformational change to the closed form optimizes active site configuration and also isolates the active site from the solvent, which may allow deprotonation of Cys(133) and protonation of Asp(202) to occur. The structural features of the substrate-binding form and biochemical evidence lead us to propose that the isomerase reaction proceeds via a cis-phosphoenolate intermediate.  相似文献   

15.
A circadian rhythm in photosynthesis occurs in Phaseolus vulgaris after transfer from a natural or artificial light:dark cycle to constant light. The rhythm in photosynthesis persists even when intercellular CO2 partial pressure is held constant, demonstrating that the rhythm in photosynthesis is not entirely due to stomatal control over the diffusion of CO2. Experiments were conducted to attempt to elucidate biochemical correlates with the circadian rhythm in photosynthesis. Plants were entrained to a 12-hour-day:12-hour-night light regimen and then monitored or sampled during a subsequent period of constant light. We observed circadian oscillations in ribulose-1,5-bisphosphate (RuBP) levels, and to a lesser extent in phosphoglyceric acid (PGA) levels, that closely paralleled oscillations in photosynthesis. However, the enzyme activity and activation state of the enzyme responsible for the conversion of RuBP to PGA, ribulose-1,5-bisphosphate carboxylase/oxygenase, showed no discernible circadian oscillation. Hence, we examined the possibility of circadian effects on RuBP regeneration. Neither ribulose-5-phosphate kinase activity nor the level of ATP fluctuated in constant light. Oscillations in triose-phosphate levels were out of phase with those observed for RuBP and PGA.  相似文献   

16.
When Ribulose- 1,5-bisphosphate carboxylase/oxygenase was purified from spinach leaves (Spinacia oleracea) using precipitation with polyethylene glycol and MgCl2 followed by DEAE cellulose chromatography, 75% of phosphoribulokinase and 7% of phosphoriboisomerase activities copurified with ribulose- 1,5-bisphosphate carboxylase/oxygenase. This enzyme preparation showed ribose-5-phosphate and ribulose-5-phosphate dependent carboxylase and oxygenase activities which were nearly equivalent to its corresponding ribulose- 1,5-bisphosphate dependent activity. The ribose-5-phosphate and ribulose-5-phosphate dependent reaction rates were stable and linear for much longer time periods than the ribulose- 1,5-bisphosphate dependent rates. When sucrose gradients were used to purify ribulose- 1,5-bisphosphate carboxylase/oxygenase from crude stromal extracts, phosphoribulokinase was found to cosediment with ribulose- 1,5-bisphosphate carboxylase. Under these conditions most of the phosphoriboisomerase activity remained with the slower sedimenting proteins. Ammonium sulfate precipitation resulted in separation of the ribulose- 1,5-bisphosphate carboxylase peak from phosphoribulokinase peak. Crude extracts of peas Pisum sativum and spinach contained 0.725 to 0.730 milligram of phosphoribulokinase per milligram of chlorophyll, respectively, based on an enzyme-linked immunosorbent assay.  相似文献   

17.
The biochemical lesion in a light-sensitive, acetate-requiring Chlamydomonas mutant was identified. This strain, designated rpk, exhibited photosynthetic rates less than 3% of the wild-type. Analysis of photosynthetic products by high-performance liquid chromatography demonstrated an accumulation of 14C label in pentose and hexose monophosphates. After 1 min of photosynthesis in 14CO2 these intermediates comprised 27.5% of the label in the mutant compared with 8% in the wild-type. The mutant pheno-type was caused by a 20-fold reduction in ribulose-5-phosphate (Ru5P)-kinase (EC 2.7.1.19) activity. The mutant exhibited wild-type levels of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) and transketolase (EC 2.2.1.1) indicating that the mutation specifically affected Ru5P kinase. In a cross of the mutant with the wild-type, tetrad progeny segregated in a Mendelian fashion (1:1) and light-sensitivity cosegregated with reduced Ru5P-kinase activity and an acetate requirement for growth. Almost normal levels of Ru5P-kinase protein were detected in the mutant by probing nitrocellulose replicas of sodium dodecylsulfate-polyacrylamide gels with anti-Ru5P-kinase antibody. The subunit size of the mutant enzyme, 42 kDa, was identical to that of the wild-type. Isoelectric focusing of the native protein determined that the mutant protein was altered, exhibiting a more acidic isoelectric point than the wild-type protein. Thus, the molecular basis for the lesion affecting Ru5P-kinase activity in mutant rpk is a charge alteration which results in a partially impaired enzyme.Abbreviations Chl chlorophyll - Da dalton - FCCP carbonylcyanide-p-trifluorophenylhydrazone - RuBP ribulose-1,5-bisphosphate - Ru5P ribulose-5-phosphate  相似文献   

18.
The catalytically active oligomeric form of the larger subunit, Am, obtained from spinach leaf ribulose-1,5-diphosphate carboxylase by pretreatment with p-mercuribenzoate at pH 7.5 followed by incubation at pH 9.0, was free of the smaller subunit based on C-terminal amino acid analyses. Valine was the predominant C-terminus of the Am preparations, the release of tyrosine being negligibly small [cf. Sugiyama and Akazawa, Biochemistry 9 (1970) 4499]. The pH optimum of the ribulose-1,5-diphosphate carboxylase reaction by Am was about 8.5, in comparison to the native enzyme which showed an alkaline pH optimum only in the absence of Mg2+. The substrate saturation curve of the catalytic subunit with respect to bicarbonate followed the Michaelis-Menten equation, as contrasted to the anomalous reaction kinetics of the native ribulose-1,5-diphosphate carboxylase molecule reported previously. These overall results indicate that the allosteric properties of spinach ribulose-1,5-diphosphate carboxylase are possibly conveyed by a unique structural conformation that requires the presence of the smaller subunit in association with the larger catalytic subunit component of the enzyme molecule.  相似文献   

19.
For purifying carboxysomes of Thiobacillus neapolitanus an isolation procedure was developed which resulted in carboxysomes free from whole cells, protoplasts and cell fragments. These purified carboxysomes are composed of 8 proteins and at the most of 13 polypeptides. The two most abundant proteins which make up more than 60% of the carboxysomes, are ribulose-1,5-bisphosphate carboxylase and a glycoprotein with a molecular weight of 54,000. The shell of the carboxysomes consists of four glycoproteins, one also with a molecular weight of 54,000. The other proteins are present in minor quantities. Ribulose-1,5-bisphosphate carboxylase is the only enzyme which could be detected in the carboxysomes and 3-phosphoglycerate was the only product formed during incubation with ribulose-1,5-diphosphate and bicarbonate. The supernatant of a broken and centrifuged carboxysome suspension contained the large subunit of ribulose-1,5-bisphosphate carboxylase. The small subunit of ribulose-1,5-bisphosphate carboxylase was found in the pellet together with the shell proteins which indicates that the small subunit of ribulose-1,5-bisphosphate carboxylase is connected to the shell.Abbreviations RuBisCO ribulose-1,5-bisphosphate carboxylase - PMSF phenylmethylsulfonyl fluoride - PAA gelectrophoresis, polyacrylamide gelelectrophoresis - SDS sodium dodecyl sulphate - CIE crossed immunoelectrophoresis - IEF isoelectric focusing  相似文献   

20.
The susceptibility of the chloroplastic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase to proteolysis by trypsin, chymotrypsin, proteinase K, and papain is enhanced by oxidative treatments including spontaneous oxidation of cysteines. Proteinases exhibit a high specificity for the oxidized inactive form of the carboxylase, cleaving its large subunit. Treatment of the inactive enzyme with dithiothreitol results in partial recovery of both carboxylase activity and resistance to proteolysis. This behavior may explain the specific degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase that occurs in vivo during leaf senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号