首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
吕学龙  祁燃  吕全龙  张传茂 《生命科学》2011,(11):1069-1075
核膜在细胞周期中呈现高度的动态性:在细胞分裂的前中期,核膜崩解并分散到细胞质中;在细胞分裂的后期,核膜开始在染色体的表面重新装配,最终形成完整的核膜结构。近期的研究发现,Ran GTP酶、物质转运蛋白importinβ、内层核膜蛋白LBR(lamin B receptor)以及核孔复合体蛋白nucleoporins在核膜重建的过程中起关键性调控作用,并受到细胞周期调控因子p34cdc2激酶的调节。LBR是一个八次跨膜的膜蛋白,主要定位于内层核膜。在细胞分裂的早期,随着核膜崩解,LBR与核膜崩解而生成的小膜泡一起分散到细胞质中;在细胞分裂的后期,通过LBR与importinβ相互结合,含有LBR的膜泡被importinβ携带至染色质的表面参与核膜重建。目前已知p34cdc2激酶对LBR与importinβ介导的核膜重建起重要调控作用。Nucleoporins是核孔复合体主要组分。随核膜崩解,核孔复合体解聚成nucleoporins,分散到细胞质中,或结合到其他亚细胞成分上。细胞分裂后期,核孔复合体伴随核膜装配而组装。  相似文献   

3.
CENP—B的基因表达与细胞周期关系的研究   总被引:1,自引:0,他引:1  
本文以HeLa细胞为材料研究一种着丝粒蛋白CENP-B的基因表达与细胞周期及细胞核骨架的关系。将HeLa细胞同步在不同周期时相,以流式细胞光度术、同位素掺入和ACA着丝粒染色等方法检测细胞同步化效果。我们分别提取了各周期时相细胞的总RNA和Poly(A)~ RNA,用Dot blot和Northern blot杂交方法研究CENP-B在细胞周期中的表达。结果表明,CENP-B基因在细胞周期中的各个时相均有表达,但表达的强度差别很大:G2期表达最强,S期最弱,G1期中的表达介于二者之间;有意义的是CENP-B基因在M期仍然有较强的表达,表现出其在细胞周期中表达的持续性;这种表达的持续性反映了一种可能性:着丝粒、动粒蛋白不断合成,但直到S期后进入G2期时着丝粒、动粒蛋白到一定临界浓度时才开始组装新的动粒。另外,着丝粒、动粒蛋白的持续合成对着丝粒、动粒功能的发挥可能是必需的。用Bam H I限制性内切酶消化处于不同细胞周期时相的HeLa细胞核骨架,提取与核骨架紧密结合的DNA,用~(32)P标记的cDNA为探针研究CENP-B基因与细胞核骨架的结合与其表达的关系。结果证明,在G2期细胞中CENP-B基因表达最强,与细胞核骨架结合最为紧密,G1期细胞中次之,S期中CENP-B基因与核骨架结合最弱,说明CENP-B基因与细胞核骨架结合的紧密度影响其表达强度。  相似文献   

4.
以增强UV-B(10.08 kJ.m-2.d-1)辐射后的小麦根尖细胞为材料,采用间接免疫荧光标记技术,利用激光共聚焦扫描显微镜,观察分析小麦根尖分裂期细胞Ran蛋白在分裂周期的分布及形态变化。研究结果显示,正常细胞中,Ran蛋白在细胞分裂间期主要定位于核膜周边,在后期定位于赤道板上和纺锤体上,末期又回到子细胞核膜周边;增强UV-B辐射处理后,在细胞分裂间期和前期有点状荧光分布在核膜的周围;中期和后期点状荧光分布在细胞质中;在末期部分点状荧光又回到核膜的周围,部分仍分散在核内,且出现落后染色体、染色体桥、不均等分裂等染色体畸变类型和异常分裂现象。  相似文献   

5.
纺锤体检验点(spindle checkpoint)是一个重要的细胞分裂生化调节通路, 可监督染色体正确分离和传代.着丝粒相关蛋白E (centromere-associated protein E, CENP-E)是一个分子量为312 kD的微管马达驱动蛋白,可以衔接纺锤体微管与动点并参与纺锤体检验点调控.为研究CENP-E的作用机理,以其动点结合区域为诱饵蛋白,用酵母双杂交技术从人HeLa细胞 cDNA 文库中筛选出了Nuf2蛋白.体外的pull-down实验和体内的免疫共沉淀实验表明, Nuf2蛋白通过其卷曲螺旋(coiled-coil) 功能域特异结合CENP-E的 C 末端区域,间接免疫荧光显示Nuf2与CENP-E共定位于细胞有丝分裂期染色体的动点.由此推论, CENP-E 通过Nuf2的直接作用参与构筑动点-微管界面,进而参与细胞有丝分裂纺锤体检验点信号转导通路,为染色体正确分离发挥调控作用.  相似文献   

6.
目前关于动物和酵母细胞中p34cdc2的定位研究结果尚存在分歧,而关于该蛋白在植物细胞中的定位尚不清楚.以多头绒泡菌( Physarum polycephalum )S期、G2早期、G2中期、G2晚期、前期、中期和后末期的原质团和细胞核为材料进行免疫印迹,发现原质团和细胞核都含有一种分子量约34 kD的类p34cdc2蛋白,该蛋白在原质团和细胞核中的含量在整个细胞周期进程中基本保持稳定.以抗p34cdc2单克隆抗体为探针的免疫电镜结果显示,类p34cdc2蛋白既分布于细胞核也分布于细胞质中,在细胞核中主要与染色体和核仁结合.经抗p34cdc2单克隆抗体处理后,多头绒泡菌的有丝分裂启始迟滞约2 h.结果表明,多头绒泡菌类p34cdc2蛋白存在于细胞核和细胞质中,与细胞有丝分裂密切相关,其含量在细胞周期进程中基本保持稳定.  相似文献   

7.
目前关于动物和酵母细胞中p34cdc2 的定位研究结果尚存在分歧 ,而关于该蛋白在植物细胞中的定位尚不清楚。以多头绒泡菌 (Physarumpolycephalum)S期、G2早期、G2中期、G2晚期、前期、中期和后末期的原质团和细胞核为材料进行免疫印迹 ,发现原质团和细胞核都含有一种分子量约 34kD的类p34cdc2 蛋白 ,该蛋白在原质团和细胞核中的含量在整个细胞周期进程中基本保持稳定。以抗p34cdc2 单克隆抗体为探针的免疫电镜结果显示 ,类p34cdc2 蛋白既分布于细胞核也分布于细胞质中 ,在细胞核中主要与染色体和核仁结合。经抗p34cdc2 单克隆抗体处理后 ,多头绒泡菌的有丝分裂启始迟滞约 2h。结果表明 ,多头绒泡菌类p34cdc2 蛋白存在于细胞核和细胞质中 ,与细胞有丝分裂密切相关 ,其含量在细胞周期进程中基本保持稳定。  相似文献   

8.
我们的前期研究发现:被微管抑制剂nocodazole抑制在第一次有丝分裂中期的小鼠受精卵在加入6-DMAP处理后核膜重新出现,并且父、母本的基因组未发生融合,分别形成了类似雌、雄原核的两个细胞核,它们共存于卵细胞质中,我们把这种特殊的胚胎称之为PM胚胎(post-mitoticembryo)。本研究表明:在去除抑制剂3h后未能形成核膜的胚胎进一步卵裂,而形成核膜的PM胚胎培养24h未见进一步发育。此外,我们采用免疫荧光染色观察PM胚胎核膜重现过程中核纤层蛋白B的动力学变化,结果显示:在加入6-DMAP后核纤层蛋白B在染色体周围逐渐聚集,约3h后核膜完全形成,此时核纤层蛋白B在染色体周围的聚集达到最高峰。文中还对6-DMAP诱导核膜形成的机制进行了探讨。  相似文献   

9.
以Molt-4、Jurkat细胞株和外周血淋巴细胞(peripheralbloodlymphocyte,PBL)为靶细胞,检测细胞膜上Fas的表达。人重组Fas配体(recombinanthumanFasligand,rhFasL)诱导细胞6~36h后用改良后的API等方法检测细胞凋亡及诱导凋亡过程中细胞周期蛋白的变化,探讨Fas介导的细胞凋亡与细胞周期的关系。结果显示:rhFasL诱导Molt-4、Jurkat细胞株和植物血凝素刺激进入细胞周期的PBL的凋亡具有细胞周期特异性并始动于G1期;而G0期PBL的细胞膜上虽然也有Fas的表达,但不能诱导细胞凋亡。研究还发现rhFasL诱导细胞凋亡时G1期的细胞周期蛋白D3明显升高,细胞周期蛋白E明显下降。以上结果表明rhFasL体外诱导的细胞凋亡发生在晚G1期,细胞凋亡的发生与细胞是否通过限制点进入细胞周期有关,细胞凋亡发生于晚G1期是G1期细胞周期蛋白E的下降和检测点的监督导致DNA受损的细胞不能通过G1/S交界的结果。  相似文献   

10.
日本沼虾精子发生的研究   总被引:21,自引:3,他引:18  
赵云龙  堵南山 《动物学报》1997,43(3):243-248
对日本沼虾精子发生全过程的电镜观察表明:精原细胞核染色质分散,胞质内有线粒休、内质网的分布。初级精母细胞核染色质块状,不均匀地分布于核中,内质同多小泡多。次级精母细胞核染色质大多分布于核膜内侧,内质网聚集成团,精细胞分化形成精子的早期,胞核增大,核侧形成内质同多小泡的聚合体;中期的核内染色质浓缩,同时形成空囊状结构,  相似文献   

11.
The kinetochore, a macromolecular complex located at the centromere of chromosomes, provides essential functions for accurate chromosome segregation. Kinetochores contain checkpoint proteins that monitor attachments between the kinetochore and microtubules to ensure that cells do not exit mitosis in the presence of unaligned chromosomes. Here we report that human CENP-I, a constitutive protein of the kinetochore that shares limited similarity with Mis6 of Schizosaccharomyces pombe, is required for the localization of CENP-F and the checkpoint proteins MAD1 and MAD2 to kinetochores. Depletion of CENP-I from kinetochores causes the cell cycle to delay in G2. Although monopolar chromosomes in CENP-I-depleted cells fail to establish bipolar connections, the cells are unable to arrest in mitosis. These cells are transiently delayed in mitosis in a MAD2-dependent manner, even though their kinetochores are depleted of MAD2. The delay is extended considerably when the number of unattached kinetochores is increased. This suggests that no single unattached kinetochore in CENP-I-depleted cells can arrest mitosis. The collective output from many unattached kinetochores is required to reach a threshold signal of 'wait for anaphase' to sustain a prolonged mitotic arrest.  相似文献   

12.
We have determined that the previously identified dual-specificity protein kinase TTK is the human orthologue of the yeast MPS1 kinase. Yeast MPS1 (monopolar spindle) is required for spindle pole duplication and the spindle checkpoint. Consistent with the recently identified vertebrate MPS1 homologues, we found that hMPS1 is localized to centrosomes and kinetochores. In addition, hMPS1 is part of a growing list of kinetochore proteins that are localized to nuclear pores. hMPS1 is required by cells to arrest in mitosis in response to spindle defects and kinetochore defects resulting from the loss of the kinesin-like protein, CENP-E. The pattern of kinetochore localization of hMPS1 in CENP-E defective cells suggests that their interaction with the kinetochore is sensitive to microtubule occupancy rather than kinetochore tension. hMPS1 is required for MAD1, MAD2 but not hBUB1, hBUBR1 and hROD to bind to kinetochores. We localized the kinetochore targeting domain in hMPS1 and found that it can abrogate the mitotic checkpoint in a dominant negative manner. Last, hMPS1 was found to associate with the anaphase promoting complex, thus raising the possibility that its checkpoint functions extend beyond the kinetochore.  相似文献   

13.
The spindle assembly checkpoint (SAC) is essential for ensuring the proper attachment of kinetochores to the spindle and, thus, the precise separation of paired sister chromatids during mitosis. The SAC proteins are recruited to the unattached kinetochores for activation of the SAC in prometaphase. However, it has been less studied whether activation of the SAC also requires the proteins that do not localize to the kinetochores. Here, we show that the nuclear protein RED, also called IK, a down-regulator of human leukocyte antigen (HLA) II, interacts with the human SAC protein MAD1. Two RED-interacting regions identified in MAD1 are from amino acid residues 301-340 and 439-480, designated as MAD1(301-340) and MAD1(439-480), respectively. Our observations reveal that RED is a spindle pole-associated protein that colocalizes with MAD1 at the spindle poles in metaphase and anaphase. Depletion of RED can cause a shorter mitotic timing, a failure in the kinetochore localization of MAD1 in prometaphase, and a defect in the SAC. Furthermore, the RED-interacting peptides MAD1(301-340) and MAD1(439-480), fused to enhanced green fluorescence protein, can colocalize with RED at the spindle poles in prometaphase, and their expression can abrogate the SAC. Taken together, we conclude that RED is required for kinetochore localization of MAD1, mitotic progression, and activation of the SAC.  相似文献   

14.
We have identified a maize homologue of yeast MAD2, an essential component in the spindle checkpoint pathway that ensures metaphase is complete before anaphase begins. Combined immunolocalization of MAD2 and a recently cloned maize CENPC homologue indicates that MAD2 localizes to an outer domain of the prometaphase kinetochore. MAD2 staining was primarily observed on mitotic kinetochores that lacked attached microtubules; i.e., at prometaphase or when the microtubules were depolymerized with oryzalin. In contrast, the loss of MAD2 staining in meiosis was not correlated with initial microtubule attachment but was correlated with a measure of tension: the distance between homologous or sister kinetochores (in meiosis I and II, respectively). Further, the tension-sensitive 3F3/2 phosphoepitope colocalized, and was lost concomitantly, with MAD2 staining at the meiotic kinetochore. The mechanism of spindle assembly (discussed here with respect to maize mitosis and meiosis) is likely to affect the relative contributions of attachment and tension. We support the idea that MAD2 is attachment-sensitive and that tension stabilizes microtubule attachments.  相似文献   

15.
Proper kinetochore function is essential for the accurate segregation of chromosomes during mitosis. Kinetochores provide the attachment sites for spindle microtubules and are required for the alignment of chromosomes at the metaphase plate (chromosome congression). Components of the conserved NDC80 complex are required for chromosome congression, and their disruption results in mitotic arrest accompanied by multiple spindle aberrations. To better understand the function of the NDC80 complex, we have identified two novel subunits of the human NDC80 complex, termed human SPC25 (hSPC25) and human SPC24 (hSPC24), using an immunoaffinity approach. hSPC25 interacted with HEC1 (human homolog of yeast Ndc80) throughout the cell cycle and localized to kinetochores during mitosis. RNA interference-mediated depletion of hSPC25 in HeLa cells caused aberrant mitosis, followed by cell death, a phenotype similar to that of cells depleted of HEC1. Loss of hSPC25 also caused multiple spindle aberrations, including elongated, multipolar, and fractured spindles. In the absence of hSPC25, MAD1 and HEC1 failed to localize to kinetochores during mitosis, whereas the kinetochore localization of BUB1 and BUBR1 was largely unaffected. Interestingly, the kinetochore localization of MAD1 in cells with a compromised NDC80 function was restored upon microtubule depolymerization. Thus, hSPC25 is an essential kinetochore component that plays a significant role in proper execution of mitotic events.  相似文献   

16.
The spindle checkpoint in the yeast Saccharomyces cerevisiae is an intracellular signal transduction pathway comprised of two branches that inhibit two different mitotic transitions in cells treated with benzimidazole drugs such as nocodazole. The kinetochore is an integral component of the MAD2 branch of the spindle checkpoint pathway. Current models propose that the kinetochore is required for both the establishment and maintenance of the spindle checkpoint but a role for the kinetochore in the maintenance of spindle checkpoint in yeast has never been directly tested. We used a temperature sensitive ndc10-1 mutant to inactivate kinetochores before and after arresting cells in mitosis to determine the role of kinetochores in the establishment and maintenance of the spindle checkpoint. We show that both establishment and maintenance requires kinetochore function in response to spindle damage induced by benzimidazole drugs. Excess expression of the Mps1 protein kinase causes wild type cells and ndc10-1 cells to arrest in mitosis. Unlike the spindle checkpoint arrest activated by benzimidazoles, this arrest can be maintained independently of kinetochores. The arrest induced by excess Mps1p is independent of BUB2. Therefore, mitotic arrest induced by excess Mps1p expression is due to the action of the MAD2 branch of the spindle checkpoint pathway and excess Mps1p acts downstream of the kinetochore.  相似文献   

17.
The spindle checkpoint in the yeast Saccharomyces cerevisiae is an intracellular signal transduction pathway comprised of two branches that inhibit two different mitotic transitions in cells treated with benzimidazole drugs such as nocodazole. The kinetochore is an integral component of the MAD2 branch of the spindle checkpoint pathway. Current models propose that the kinetochore is required for both the establishment and maintenance of the spindle checkpoint but a role for the kinetochore in the maintenance of spindle checkpoint in yeast has never been directly tested. We used a temperature sensitive ndc10-1 mutant to inactivate kinetochores before and after arresting cells in mitosis to determine the role of kinetochores in the establishment and maintenance of the spindle checkpoint. We show that both establishment and maintenance requires kinetochore function in response to spindle damage induced by benzimidazole drugs. Excess expression of the Mps1 protein kinase causes wild type cells and ndc10-1 cells to arrest in mitosis. Unlike the spindle checkpoint arrest activated by benzimidazoles, this arrest can be maintained independently of kinetochores. The arrest induced by excess Mps1p is independent of BUB2. Therefore, mitotic arrest induced by excess Mps1p expression is due to the action of the MAD2 branch of the spindle checkpoint pathway and excess Mps1p acts downstream of the kinetochore.  相似文献   

18.
Spindly recruits a fraction of cytoplasmic dynein to kinetochores for poleward movement of chromosomes and control of mitotic checkpoint signaling. Here we show that human Spindly is a cell cycle–regulated mitotic phosphoprotein that interacts with the Rod/ZW10/Zwilch (RZZ) complex. The kinetochore levels of Spindly are regulated by microtubule attachment and biorientation induced tension. Deletion mutants lacking the N-terminal half of the protein (NΔ253), or the conserved Spindly box (ΔSB), strongly localized to kinetochores and failed to respond to attachment or tension. In addition, these mutants prevented the removal of the RZZ complex and that of MAD2 from bioriented chromosomes and caused cells to arrest at metaphase, showing that RZZ-Spindly has to be removed from kinetochores to terminate mitotic checkpoint signaling. Depletion of Spindly by RNAi, however, caused cells to arrest in prometaphase because of a delay in microtubule attachment. Surprisingly, this defect was alleviated by codepletion of ZW10. Thus, Spindly is not only required for kinetochore localization of dynein but is a functional component of a mechanism that couples dynein-dependent poleward movement of chromosomes to their efficient attachment to microtubules.  相似文献   

19.
The spindle assembly checkpoint (SAC) monitors the microtubule attachment status of the kinetochore and arrests cells before anaphase until all pairs of sister kinetochores achieve bipolar attachment of microtubules, thereby ensuring faithful chromosome transmission. The evolutionarily conserved coiled-coil protein MAD1 has been implicated in the SAC signaling pathway. MAD1 forms a complex with another SAC component MAD2 and specifically localizes to unattached kinetochores to facilitate efficient binding of MAD2 to its target, CDC20, the mitotic substrate-specific activator of the anaphase promoting complex or cyclosome (APC/C). Thus, MAD1 connects 2 sequential events in the SAC signaling pathway – recognition of unattached kinetochores and inhibition of APC/C activity. However, the molecular mechanisms by which it specifically localizes to unattached kinetochores are largely unknown. Studies in multicellular organisms have revealed the role of MAD1 in development and tumor suppression, but the precise time at which MAD1 activity is required is unknown. Investigation of cellular and organismic functions of MAD1 in the simple multicellular organism C. elegans identified functional interactors of MAD1 in both kinetochore-oriented SAC signaling and kinetochore-independent cell cycle regulation. Studying the function of SAC components in C. elegans provides a new molecular insight into the SAC-regulated cell cycle progression in a context of a multicellular organism.  相似文献   

20.
The spindle assembly checkpoint monitors the state of spindle–kinetochore interaction to prevent premature onset of anaphase. Although checkpoint proteins, such as Mad2, are localized on kinetochores that do not interact properly with the spindle, it remains unknown how the checkpoint proteins recognize abnormalities in spindle–kinetochore interaction. Here, we report that Mad2 localization on kinetochores in fission yeast is regulated by two partially overlapping but distinct pathways: the Dam1/DASH and the Bub1 pathways. We show that Mad2 is localized on “unattached” as well as “tensionless” kinetochores. Our observations suggest that Bub1 is required for Mad2 to detect tensionless kinetochores, whereas Dam1/DASH is crucial for Mad2 to detect unattached kinetochores. In cells lacking both Bub1 and Dam1/DASH, Mad2 localization on kinetochores is diminished, and mitotic progression appears to be accelerated despite the frequent occurrence of abnormal chromosome segregation. Furthermore, we found that Dam1/DASH is required for promotion of spindle association with unattached kinetochores. In contrast, there is accumulating evidence that Bub1 is involved in resolution of erroneous spindle attachment on tensionless kinetochores. These pathways may act as molecular sensors determining the state of spindle association on each kinetochore, enabling proper regulation of the checkpoint activation as well as promotion/resolution of spindle attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号