首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
一种高效可直接用于PCR分析的土壤总微生物DNA抽提方法   总被引:16,自引:0,他引:16  
李钧敏  金则新 《应用生态学报》2006,17(11):2107-2111
以CTAB-溶菌酶-蛋白酶K-冻融裂解法直接抽提土壤总微生物的基因组DNA,利用G8000沉淀和纯化DNA.结果表明,该方法是一种简便、有效可直接应用于PCR分析的土壤总微生物基因组DNA的抽提方法.采用含聚乙烯吡咯烷酮(PVP)的缓冲液预洗,添加CaCl2和BSA,可以去除腐殖酸;用PEG8000沉淀DNA,可以提高DNA质量;采用冻融法破碎细胞,CTAB、溶菌酶和蛋白质酶K共同作用以裂解细胞,可以保证获得大片段的DNA,提高DNA产率.用该方法抽提的七子花林下土壤总微生物DNA产率为9.22 μg·g-1,A260/A280为1.65,可适用于 PCR扩增及扩增rDNA限制酶切分析(ARDRA)技术,适宜的模板DNA浓度为0.67 ng·μl-1.快速、有效、可直接用于PCR分析的土壤总微生物DNA提取方法的建立,为大规模的土壤微生物分子生态学研究提供了可能.  相似文献   

2.
目的:探讨适用于微生物多样性研究的棉田土壤微生物总DNA提取方法。方法:采用4种方法提取不同连作和轮作处理的棉田土壤微生物总DNA,比较其纯度、产率、片段大小,并应用ARDRA技术验证其质量。结果:其中3种方法均可获得23kb的DNA片段,但不同方法提取的DNA的产率和纯度上有明显差异。改良CTAB-SDS法提取的DNA完整性好,得率为24.20μg.g-1干土,纯化后A260/A280和A260/A230为分别为1.80和1.70,纯化回收率可达70.1%,完全适用于后续的PCR分析。结论:采用该法提取棉田土壤总DNA简便而高效。对该法提取获得的棉田土壤微生物总DNA进行ARDRA和DGGE分析,所得图谱能较全面地反映不同处理间微生物多样性及群落结构的差别,为不同栽培体系下棉田土壤微生物的分子生态学研究提供了基础。  相似文献   

3.
目的:提出一种适于微生物多样性分析的青贮饲料中微生物总DNA的提取方法,并评价其效果.方法:间接法抽提样本的总DNA,通过琼脂糖电泳、紫外吸收及PCR分析DNA质量,DGGE评价提取效果,用PCR扩增目的菌株的特定片段来检测提取方法的灵敏度.结果:两个样本DNA的A260/A280值分别为1.99和1.93,A260/,A230值分别为2.19和1.90,提取的DNA不需纯化便可直接用于16S rRNA基因的扩增,提取方法灵敏度为3cfu/g,DGGE结果表明提取方法可以涵盖样品中的所有微生物.结论:提取的DNA纯度较高,可直接用于下游分子操作,提取方法灵敏度较高,能全面反映样品中的微生物原貌,可用于免培养法研究青贮饲料中的微生物菌群组成.  相似文献   

4.
工业化废水处理反应器污泥总DNA提取方法   总被引:2,自引:0,他引:2  
根据工业化废水处理反应器污泥特性,对常规的溶菌酶-SDS-酚/氯仿环境样品总DNA提取方法进行改进,增强样品预处理,强化细胞裂解,提高杂质去除效率,获得了一种工业化污泥总DNA提取的通用方法,并采用该方法对石家庄若干实际运行的工业化厌氧、好氧反应器的污泥样品进行了总DNA提取研究.结果表明,该方法对所选污泥样品均有效,具有普适性.提取的污泥总DNA杂质含量少,纯度高,A260/A280在1.8左右;提取效率较高.总DNA产率都在0.7 mg/g以上,最大产率可达0.85 mg/g.所提取的污泥总DNA可以直接作为模板进行PCR反应,PCR产物直接进行变性梯度凝胶电泳(DGGE),能够得到较好的DGGE谱图,表明该方法提取的污泥总DNA样品可满足后续分析研究的要求.  相似文献   

5.
堆肥环境中高浓度腐殖酸的存在阻碍了对这个环境中的未培养微生物的宏基因组研究。我们提出了一个确实可行的提取堆肥环境DNA的方法, 这个方法通过使用Sephadex G200+酸洗PVPP层析柱与电洗脱两步纯化的方法成功地纯化堆肥环境来源的DNA, 用这个DNA成功构建了一个包含约10万个克隆的柯斯质粒文库。从这个文库中筛选到一个新的β-葡萄糖苷酶基因。针对文库低的阳性筛选率问题, 利用分子技术研究了不同的分离速度对提取到的总DNA中真核生物DNA量的影响, 以减少文库中真核生物DNA的污染。  相似文献   

6.
东北设施黑土土壤微生物总DNA提取方法探讨   总被引:1,自引:0,他引:1  
目的:找到一种适合东北设施高腐殖含量黑土土壤微生物总DNA简单易行的提取方法。方法:采用5种不同的DNA提取方法进行土壤总DNA提取。结果:5种提取方法的DNA产量在6.88~29.71μg/g,OD260/OD280值为1.03~1.27,OD260/OD230值为0.65~0.88,经纯化后均可进行PCR扩增。但经改进的方法 E提取DNA产量最高,纯度最好。结论:方法 E—加入TENP和PBS缓冲液预处理的提取方法是一种适宜东北设施黑土土壤微生物总DNA批量提取简单易行的方法。  相似文献   

7.
茶园土壤微生物总DNA不同提取方法的比较   总被引:1,自引:0,他引:1  
传统的微生物分离培养方法,在反映茶园土壤微生物基因信息上有很大的局限性,因此,目前逐步被分子生态学的方法替代,而获得高质量、大片段、无偏好的土壤微生物总DNA则是茶园土壤微生物分子生态学研究的基础.本文采用SDS高盐法、变性剂加SDS高盐法、脱腐SDS高盐法、CTAB法和Krsek改进法5种土壤微生物DNA提取方法分别从茶园土壤微生物中提取总DNA,并对5种方法提取的DNA的片段大小、质量和产量进行了综合评价.结果表明,Krsek改进法提取到的DNA片段最大(>23 kb)、纯度最高(OD260/OD280>1.70;OD260/OD230>1.35)、产量较高(>34.50μg/g dry soil)且不需纯化就可以用于PCR扩增和RFLP分析.因此,Krsek改进法是一种高效、可靠且适合于茶园土壤微生物分子生态学研究的DNA提取方法.  相似文献   

8.
目的:为了从分子水平上了解厌氧颗粒污泥中微生物的种类和数量,研究一种高效提取环境微生物DNA的方法。方法:厌氧颗粒污泥样品经液氮速冻、沸水浴融化、溶菌酶处理和SDS裂解后,琼脂糖凝胶电泳检测所提取的DNA,以提取的总DNA为模板,进行细菌核糖体小亚基16S rDNA基因V8、V9区的PCR扩增。结果:经检测,其DNA片段约为20 kb,样品D260nm/D280nm值为1.88,扩增结果理想,与OMEGA公司提供的试剂盒提取效果基本一致。结论:为薯类酒糟厌氧发酵污泥中微生物群落的分子生态学研究提供了一种简便、可靠的DNA提取方法。  相似文献   

9.
土壤样品中DNA提取方法的比较   总被引:7,自引:0,他引:7  
陈敏 《微生物学杂志》2005,25(3):101-104
对土壤样品中提取DNA方法的有效性进行了比较研究。如果以细胞有效裂解和DNA产率为标准,用冻融进行预处理再结合SDS和溶菌酶的化学裂解方法,是效果最佳的DNA抽提方法,细胞裂解率为82%,DNA产率达20.8μg/g。为了去除PCR抑制物,将DNA样品进一步用柱纯化,回收率为80%。纯化后的DNA样品可用于16SrDNA扩增及其他分子操作。  相似文献   

10.
一种快速提取肠道微生物总DNA的方法   总被引:5,自引:2,他引:3  
采集的兔肠道内容物及其粪便样品,通过分散浸泡、震荡洗涤、分级离心、滤器过滤、DNA提取试剂盒提取纯化,可以获得纯度很高的DNA样品。经0.8%琼脂糖凝胶电泳检测和紫外分光光度计测定,样品A260/A280的比值为1.72±0.02。分别以提取的DNA样品为模板,通过设计的细菌特异引物,对其16S rDNA基因进行PCR扩增,获得了1.6 kb大小特异性很好的预期条带。这为肠道微生物群落的分子生态学研究提供了一种简便、可靠的DNA提取方法。  相似文献   

11.
Analysis of microbial community structure in complex environmental samples using nucleic acid techniques requires efficient unbiased DNA extraction procedures; however, humic acids and other contaminants complicate the isolation of PCR-amplifiable DNA from compost and other organic-rich samples. In this study, combinations of DNA extraction and purification methods were compared based on DNA yield, humic acid contamination, PCR amplifiability, and microbial community structure assessed by terminal restriction fragment length polymorphisms (TRFLP) of amplified 16S rRNA genes. DNA yield and humic acid contamination, determined by A230, varied significantly between extraction methods. Humic acid contamination of DNA obtained from compost decreased with increasing salt concentration in the lysis buffer. DNA purified by gel permeation chromatography (Sepharose 4B columns) gave satisfactory PCR amplification with universal eubacterial 16S rRNA gene primers only when A260/A280 ratios exceeded 1.5. DNA purified with affinity chromatography (hydroxyapatite columns), and showing A260/A280 ratios as high as 1.8, did not show consistently satisfactory PCR amplification using the same 16S rRNA primers. Almost all DNA samples purified by agarose gel electrophoresis showed satisfactory PCR amplification. Principal components analysis (PCA) of TRFLP patterns differentiated compost types based on the presence/absence of peaks and on the height of the peaks, but differences in TRFLP patterns were not appreciable between extraction methods that yielded relatively pure DNA. High levels of humic acid contamination in extracted DNA resulted in TRFLP patterns that were not consistent and introduced a bias towards lower estimates of diversity.  相似文献   

12.
A quantitative analysis of DNA extraction and purification from compost   总被引:10,自引:0,他引:10  
We quantified both DNA and humic acid concentrations during the extraction and purification of DNA from compost. The DNA extraction method consisted of bead-beating with SDS for cell lysis, poly(ethylene glycol)-8000 precipitation for preliminary DNA purification, and chromatography on a 10-ml Sephadex G-200 column for final DNA purification. Direct microscopic observation of pre- and post-lysis samples revealed that 95.3+/-2.3% of native cells was lysed. Sixty-three percent of the original DNA was lost during purification, resulting in a final DNA yield of 18.2+/-3.8 microg DNA/g of wet compost. The humic acid content was reduced by 97% during the purification steps resulting in a final humic acid concentration of 27+/-4.7 ng humic acid/microl. The purified DNA fragments were up to 14 kbp in size and were sufficiently free of contaminants to allow both restriction enzyme digestion by four different enzymes and PCR amplification of 16S rDNA.  相似文献   

13.
Based on the comparative study of the DNA extracts from two soil samples obtained by three commercial DNA extraction kits, we evaluated the influence of the DNA quantity and purity indices (the absorbance ratios A260/280 and A260/230, as well as the absorbance value A320 indicating the amount of humic substances) on polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) and a functional gene microarray used in the study of microbial communities. Numbers and intensities of the DGGE bands are more affected by the A260/280 and A320 values than by the ratio A260/230 and conditionally affected by the DNA yield. Moreover, we demonstrated that the DGGE band pattern was also affected by the preferential extraction due to chemical agents applied in the extraction. Unlike DGGE, microarray is more affected by the A260/230 and A320 values. Until now, the successful PCR performance is the mostly used criterion for soil DNA purity. However, since PCR was more influenced by the A260/280 ratio than by A260/230, it is not accurate enough any more for microbial community assessed by non-PCR-based methods such as microarray. This study provides some useful hints on how to choose effective DNA extraction method for the subsequent assessment of microbial community.  相似文献   

14.
The differences on DNA yield and purity of three different DNA extraction protocols were compared with regard to the use for PCR and other molecular analyses. Total DNA was extracted from compost by the three protocols, and then was purified by spin-bind cartridges after being precipitated by PEG8000. The detection performed on a nucleic acid and protein analyzer showed that all three methods produced high DNA yields. The agarose gel electrophoresis showed that the fragments of crude and purified DNA had a length of about 23 kb. A eubacterial 16S rRNA gene-targeted primer pair was used for PCR amplification, and full length 16S rDNAs were amplified from all the purified DNA samples. After being digested by restriction endonucleases, the restriction map of amplified rDNA showed identical genetic diversity. The products of PCR using primer pair GC341F and 907R were also used for denaturing gradient gel electrophoresis analysis. The results indicated that high-quality DNA was extracted from compost by the three protocols, and each of the protocols is adapted to extract microbial genome DNA from compost expediently and cheaply.  相似文献   

15.
Extraction of good-quality metagenomic DNA from extreme environments is quite challenging, particularly from high elevation hot spring sediments. Low microbial load, high humic acid content and other contaminants complicate the process of extraction of metagenomic DNA from hot spring sediments. In the present study, efficacy of five manual DNA extraction protocols with modifications has been evaluated for metagenomic DNA extraction from boron–sulfur rich high elevation Puga hot spring sediments. Best suited protocol was identified based on the cell lysis efficiency, DNA yield, humic acid content, PCR reproducibility and representation of bacterial diversity. Quantity as well as quality of crude metagenomic DNA differed remarkably between various protocols used and were not pure enough to give PCR amplification using 16S rRNA bacterial and archaeal primers. Crude metagenomic DNA extracted using five different DNA extraction protocols was purified using spin column based purification method. Even after purification, only three protocols C, D and E yielded metagenomic DNA that could be amplified using both archaeal and bacterial primers. To evaluate the degree of microbial diversity represented by protocols C, D and E, phylogenetic genes amplified were subjected to amplified ribosomal DNA restriction analysis (ARDRA) and denaturing gradient gel electrophoresis analysis (DGGE) analysis. ARDRA banding pattern of amplicons generated for all the three extraction protocols, i.e., C, D and E were found to be similar. DGGE of protocol E derived amplicons resulted in the similar number of dominant bands but a greater number of non-dominant bands, i.e., the highest microbial diversity in comparison to protocols C and D, respectively. In the present study, protocol E developed from Yeates et al. protocol has been found to be best in terms of DNA yield, DNA purity and bacterial diversity depiction associated with boron–sulfur rich sediment of high elevation hot springs.  相似文献   

16.
Aims:  To develop total DNA extraction protocol from saline soil for further metagenomic applications.
Methods and Results:  The protocols combine the application of mechanical (Beads and Sonicator) and Soft Lysis (SDS and enzymes) method for the isolation of total DNA from saline soil of coastal Gujarat followed by its quantification and purity assessment. The quality and purity of metagenomic DNA was quite consistent and reliable, although it contained residual concentartions of humic acid. The extracted DNA was used to successfully amplify 16S rRNA region. The amplicons were suitable for further applications such as diversity-based analysis by denaturing gradient gel electrophoresis (DGGE).
Conclusions:  The methods appear to have wide applicability in investigating molecular diversity and exploring functional genes from the total DNA.
Significance and Impact of the Study:  The protocol is simple, short and facilitates rapid isolation of PCR amplifiable total genomic DNA from saline soil. The method yielded good quality of the DNA suitable for metagenomic studies. The results are also significant as only few extreme environments, particularly saline habitats, are explored for their metagenomic potential.  相似文献   

17.
An unbiased DNA extraction protocol is necessary for analysis of genetic diversity, particularly, of genes in complex environmental samples by nucleic acid techniques. In the present study, three manual extraction methods and two commonly used commercial kits, which were accompanied by two DNA purification strategies, were compared based on cell lysis efficiency, DNA and humic acid yields, PCR amplification and denaturing gradient gel electrophoresis (DGGE) analysis. The results show that in spite of higher cell lysis efficiencies of the two commercial kits, the purified DNA yields were only one-third of that obtained by the two manual methods of FTSP (Freeze–thaw–SDS–Protein K) and FTSPP (Freeze–thaw–SDS–Protein K-Polyvinylpolypyrrolidone). The purified DNA from all five methods was pure enough for successful PCR and real-time PCR amplifications in the presence of 1 μg μL?1 BSA. However, the FTSPP extraction method with DNA purification by a Wizard® kit yielded the largest number of 16S rRNA gene copies and ribotypes or bands in DGGE profiles, which indicated a superiority over the other four methods. The development of this optimized DNA extraction and purification method may provide a valuable tool for further molecular analysis of compost.  相似文献   

18.
以95%酒精保存的黄鳝(M onopterus albus)和斑鳢(Channa maculates)标本为材料,采用先沉降DNA再去除杂质的方法从鱼类标本中提取基因组DNA。基因组DNA的琼脂糖凝胶电泳和紫外分光光度法检测以及PCR扩增结果显示,本方法提取的鱼类基因组DNA的电泳主带清晰明亮;A260/A280值在1.7830-2.0144之间;PCR扩增产物条带清晰明亮,且单一整齐没有拖带,表明本方法可从酒精保存的鱼类标本中提取比较纯净的DNA,能够满足一般分子生物学试验需要。与传统苯酚/氯仿法相比,本方法操作简单快速,避免了苯酚等物质对后续实验的影响,可作为一种常规动物组织DNA提取方法。  相似文献   

19.
In this study, we explored methodological aspects of nucleic acid recovery from microbial communities involved in a gas biofilter filled with pine bark woodchips. DNA was recovered indirectly in two steps, comparing different methods: cell dispersion (crushing, shaking, and sonication) and DNA extraction (three commercial kits and a laboratory protocol). The objectives were (a) to optimize cell desorption from the packing material and (b) to compare the 12 combinations of desorption and extraction methods, according to three relevant criteria: DNA yield, DNA purity, and community structure representation by denaturing gradient gel electrophoresis (DGGE). Cell dispersion was not influenced by the operational parameters tested for shaking and blending, while it increased with time for sonication. DNA extraction by the laboratory protocol provided the highest DNA yields, whereas the best DNA purity was obtained by a commercial kit designed for DNA extraction from soil. After successful PCR amplification, the 12 methods did not generate the same bias in microbial community representation. Eight combinations led to high diversity estimation, independently of the experimental procedure. Among them, six provided highly similar DGGE profiles. Two protocols generated a significantly dissimilar community profile, with less diversity. This study highlighted the crucial importance of DNA recovery bias evaluation.  相似文献   

20.
By using denaturing gradient gel electrophoresis (DGGE) and simultaneously measuring the enzymatic activity of chitinase, we could link genetic diversity of the indigenous microbial communities with chitinase activity in compost samples. A garden/park waste compost and a source separated organic household waste compost, showed different genetic diversity as measured by PCR-DGGE of total DNA extracted from the composts. The household waste compost had the highest chitinase activity. To increase chitinase activity, the two composts were amended with chitin. This addition induced a change in both the bacterial and fungal genetic diversity when compared to the non-amended compost samples. Likewise, both composts reacted to the addition of chitin with an increase in chitinase activity. Thus, a relationship between genetic diversity and chitinase activity was established for the composts in question. The N-mineralization in the household waste compost was apparently increased by the addition of chitin, while such an effect was not observed in the garden/park waste compost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号