首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
【背景】蛹虫草是一种珍稀食药用菌,类胡萝卜素不仅为其重要活性成分,而且影响子实体的外观品相,但是类胡萝卜素产生的影响因素不明。【目的】揭示氮源对蛹虫草生长和类胡萝卜素产生的影响。【方法】测定不同氮源培养基中菌株生长速度、分生孢子产生及类胡萝卜含量,筛选菌株生长的最适氮源,进一步研究不同浓度的氮源对蛹虫草生长及类胡萝卜素产生的影响,并测定不同光照条件下氮源浓度对蛹虫草子实体类胡萝卜素产生的影响。【结果】蛹虫草在不同的氮源培养基中菌落形态和类胡萝卜素产生存在明显差异。麦麸和黄豆粉培养基中菌株生长速度最快,但是菌落稀疏,正面分别呈现荧光黄色和极微弱红色;蛋白胨和酵母提取物培养基中菌落致密,产孢量极显著高于其它氮源培养基(P0.01),菌落正面为橙黄色;甘氨酸和柠檬酸为氮源时完全没有色素产生,其它无机和氨基酸氮源培养基平板背面有微量色素产生。固体和液体静置培养条件下均发现蛋白胨浓度在0-3%的范围内,随着浓度的增加,类胡萝卜素含量增加;子实体栽培中不同的氮源浓度均表现为蓝光光照条件下类胡萝卜素含量显著高于白光;而在白光和蓝光光照条件下均表现为蛋白胨浓度为1%时类胡萝卜素含量最高,分别为2 809.38±386.24μg/g和4 093.75±518.37μg/g。【结论】氮源种类和浓度显著影响蛹虫草类胡萝卜素的产生,蓝光光照和1%蛋白胨浓度为子实体类胡萝卜素产生的最佳条件,这为栽培富含类胡萝卜素的蛹虫草子实体提供了试验依据。  相似文献   

2.
沼泽红假单胞菌中类胡萝卜素的提取与分析   总被引:1,自引:0,他引:1  
李福枝  刘飞  邓靖 《生物技术》2007,17(1):50-53
目的:研究沼泽红假单胞菌中类胡萝卜素的提取工艺条件。方法:对细胞收集、前处理、色素初浸、二次萃取,皂化和溶剂回收等方面进行了系统的研究,并通过紫外分光光度法和高效液相色谱法对所提取的类胡萝卜素进行了分析。结果:实验结果表明,类胡萝卜素的最佳提取工艺条件为:碱性氯化钙絮凝法收集细胞,乙醇浸泡法进行前处理,49℃下丙酮初浸提浸提4h(搅拌并加抗氧化剂),丙酮用量为5mL/g菌泥,回收丙酮,乙醚二次萃取,30℃下皂化1.5h,洗涤,浓缩并回收乙醚,在此提取工艺条件下不仅能够有效地提取红螺菌中的类胡萝卜素,而且还能分离细菌叶绿素。结论在本实验条件下,根据标准曲线计算出类胡萝卜素的含量高达6.148mg/L菌泥。通过HPLC分析表明:类胡萝卜素提取液中主要成分至少有10种。  相似文献   

3.
为探究香蕉皮类胡萝卜素提取及综合利用的可能性,采用单因素试验与正交试验相结合的方法优化香蕉皮类胡萝卜素的提取工艺条件。结果表明:其最佳提取工艺条件为:以丙酮为提取溶剂、料液比1∶25、提取温度45℃、提取时间75min,在此工艺条件下可获得最佳提取效果,类胡萝卜素提取量平均值为12.541 mg/g。另用超声波辅助提取法,得到香蕉皮中类胡萝卜素提取量平均值为13.740mg/g,在提取时间仅为20min的情况下,比普通浸提法的提取量增加了9.56%,提取效率大大提高。  相似文献   

4.
红酵母产类胡萝卜素提取工艺的优化研究   总被引:1,自引:0,他引:1  
目的:从提取溶剂及提取条件等方面对红酵母产类胡萝卜素提取工艺进行了优化研究。方法:用单因子实验对提取溶剂进行了筛选;用析因试验对提取条件进行了分析研究;通过最陡爬坡实验和中心组合设计实验,优化得到了最佳的类胡萝卜素提取条件。结果:结果表明丙酮和二甲亚砜组成的复合体系是理想的提取溶剂。溶剂添加量、提取温度、提取时间、丙酮与二甲亚砜组分比例都对红酵母产类胡萝卜素提取产生一定影响,其中溶剂添加量和丙酮与二甲亚砜组成比例的影响最为显著(P<0.001)。最佳优化提取条件为:溶剂添加量为42.66%(V/V),丙酮与二甲亚砜组成比例为62.47%(V/V),温度为20℃,提取时间为90min,在此条件下红酵母产类胡萝卜素的最大提取量为5.51μg/ml。结论:实验得到了红酵母发酵产类胡萝卜素溶剂提取条件的一个非常合适的模型。  相似文献   

5.
丁健  徐娟  张红艳 《生物技术》2004,14(6):30-32
研究了避光条件下柑橘皮类胡萝止素提取物与VC及VE在丙酮溶剂体系中的协同抗氧化性,初步探讨了协同效应产生的条件以及机理。结果表明,在VC浓度为100mg/mL,类胡萝卜素起始浓度与VC浓度的比值小于或等于0.05时,或、VE浓度为O.384mg/mL,类胡萝卜素起始浓度与、VE浓度的比值小于或等于1.5时,类胡萝卜素与VC或、VE在丙酮体系中存在显著的助氧化作用;当体系中VC或VE浓度较低时,随反应时间延长,VC或VE可促进类胡萝卜素的氧化降解。  相似文献   

6.
目的 对海洋红酵母Y2高产类胡萝卜素的发酵条件进行优化.方法 在摇瓶条件下,研究培养基成分和培养条件对海洋红酵母Y2生长和类胡萝卜素合成的影响,同时进行海洋红酵母Y2发酵过程的动态分析.结果 海洋红酵母Y2优化培养基组合为葡萄糖45 g/L,蔗糖15 g/L,酵母粉5 g/L,蛋白胨2.5 g/L,磷酸二氢钾1 g/L,磷酸二氢钠3 g/L,硫酸镁7.5 g/L,氯化钾3 g/L,氯化钠5 g/L.最适培养参数为:温度20℃,培养基初始pH为5,接种量为10%,250 mL摇瓶装液量为10~50 mL.类胡萝卜素的合成主要集中在对数生长期和稳定期.海洋红酵母Y2最适收获时间为72 h.种龄以36 h为宜.结论 利用优化培养基,在最适条件下培养海洋红酵母Y2,类胡萝卜素产量达到4.97 mg/L,比基础培养基提高了60.32%.  相似文献   

7.
类胡萝卜素广泛存在于细菌、藻类、真菌和植物中,是一类具有重要的生理保健功能的呈黄色、橙红色或红色的多烯类化合物。考察了不同逆境条件,包括低温、低温处理时间、酸处理及高浓度盐处理对促进一株红酵母(Rhodotorulasp.)发酵生产类胡萝卜素的影响,并利用响应面分析方法研究了其交互作用。结果表明,低温,酸处理、高浓度盐的影响以及低温和酸处理、低温和高浓度盐以及低温处理时间和酸处理的交互作用对类胡萝卜素产量的影响均显著,在温度为15℃处理48 h,pH3.5,NaCl浓度为2 mol/L的条件下,类胡萝卜素最高产量达到31.04 mg/L,说明逆境对红酵母发酵生产类胡萝卜素具有促进作用。  相似文献   

8.
粘红酵母发酵生产类胡萝卜素培养条件的优化   总被引:5,自引:0,他引:5  
目的是通过测定不同条件下类胡萝卜素的产量找出粘红酵母发酵生产类胡萝卜素的最优条件。探讨了不同碳源、氮源对粘红酵母菌体生长和色素形成的影响,并通过正交实验确定了最佳条件组合。实验结果表明,最适发酵培养条件为:蔗糖40g/L、酵母粉20g/L、转速150r/min、装液量30mL/500mL、发酵时间84h。在此条件下,粘红酵母摇瓶发酵的生物量、类胡萝卜素含量及产量分别达15.17g/L、718.6μg/g、10.9mg/L,依次比初始发酵提高了1倍、7.4倍和15.8倍。发酵过程动态分析表明,84h色素产量达最高峰。  相似文献   

9.
本文研究了不同光质和类胡萝卜素专一抑制剂 norflurazon 对欧洲赤松(Pinussylvestris)子叶叶绿体色素形成的影响,所得结果如下:1.在远红光下,类胡萝卜素相对合成速率大于叶绿素的合成速率,而在红光下恰恰相反。2.在白光下,当类胡萝卜素合成受抑制时,叶绿素的合成速率也有所降低。但是叶绿素相对积累量比类胡萝卜素大得多,叶绿素与类胡萝卜素的分子比增大到10:1,说明这两种色素的合成与积累有相当大的独立性。3.把连续在远红光下类胡萝卜素合成受抑制(含量为正常幼苗的30%)的松苗,移入强白光下4小时后,其总叶绿素和类胡萝卜素都有增加,表明只要有少量类胡萝卜素存在,光对色素合成的促进仍大于光氧化破坏。  相似文献   

10.
影响光合细菌类胡萝卜素形成因素的研究   总被引:1,自引:0,他引:1  
对已初步确认为球形红假单胞菌属的S—1菌株进行了类胡萝卜素形成因素的研究。通过对光照强度、温度、pH、碳源、氮源、生长因子和无机盐成份等培养条件的探讨,找到了适合类胡萝卜素形成的条件,为开发光合细菌类胡萝卜素提供了依据。  相似文献   

11.
12.
Rhodotorula glutinis TISTR 5159 is oleaginous red yeast that accumulates both lipids and carotenoids. It was cultured in palm oil mill effluent (POME) with only the addition of ammonium sulfate and Tween 20 as a suitable nitrogen source and surfactant, respectively. Response surface methodology (RSM) was applied to optimize initial chemical oxygen demand (COD) in POME, C/N ratio, and Tween 20 concentration for concomitant production of lipids and carotenoids. Among three investigated factors, C/N ratio contributed a significant effect upon lipid and carotenoids production. Analysis of response surface plots revealed that the optimum C/N ratio for the biomass was 140, while that for lipid content and carotenoids were higher at 180 and 170, respectively. The high level of the nitrogen source (with a low C/N ratio) enhanced the biomass, making the accumulation of lipids and carotenoids less preferable. Hence, the two-stage process was attempted as an optimal way for cell growth in the first stage and product accumulation in the second stage. The lipid yield and carotenoid production obtained in the two-stage process were higher than those in the one-stage process. In the semi-continuous fermentation, R. glutinis TISTR 5159 accumulated high lipid content and produced a considerably high concentration of carotenoids during long-term cultivation. Additionally, efficient COD removal by R. glutinis TISTR 5159 was observed. The biodiesel produced from yeast lipids was composed mainly of oleic and palmitic acids, similar to those from plant oil.  相似文献   

13.
Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.  相似文献   

14.
Carotenoids produced by Sporidiobolus pararoseus were studied. It was found that biomass was connected with carbon source, temperature, and pH, but carotenoids proportion was seriously influenced by dissolved oxygen and nitrogen source. Different carotenoids could be obtained by using selected optimum conditions. In the end we established the strategies to produce β-carotene or torulene. Fed-batch fermentation in fermentor was used to prove the authenticity of our conclusions. The cell biomass, β-carotene content, and β-carotene proportion could reach 56.32?g/L, 18.92?mg/L and 60.43%, respectively, by using corn steep liquor at 0-5% of dissolved oxygen saturation. β-Carotene content was 271% higher than before this addition. The cell biomass, torulene content, and torulene proportion could reach 62.47?g/L, 31.74?mg/L, and 70.41%, respectively, by using yeast extract at 30-35% of dissolved oxygen saturation. Torulene content was 152% higher than before this addition. The strategy for enhancing specific carotenoid production by selected fermentation conditions may provide an alternative approach to enhance carotenoid production with other strains.  相似文献   

15.
Carotenoids produced by Sporidiobolus pararoseus were studied. It was found that biomass was connected with carbon source, temperature, and pH, but carotenoids proportion was seriously influenced by dissolved oxygen and nitrogen source. Different carotenoids could be obtained by using selected optimum conditions. In the end we established the strategies to produce β-carotene or torulene. Fed-batch fermentation in fermentor was used to prove the authenticity of our conclusions. The cell biomass, β-carotene content, and β-carotene proportion could reach 56.32 g/L, 18.92 mg/L and 60.43%, respectively, by using corn steep liquor at 0–5% of dissolved oxygen saturation. β-Carotene content was 271% higher than before this addition. The cell biomass, torulene content, and torulene proportion could reach 62.47 g/L, 31.74 mg/L, and 70.41%, respectively, by using yeast extract at 30–35% of dissolved oxygen saturation. Torulene content was 152% higher than before this addition. The strategy for enhancing specific carotenoid production by selected fermentation conditions may provide an alternative approach to enhance carotenoid production with other strains.  相似文献   

16.
The process of the simultaneous production and extraction of carotenoids, milking, of Dunaliella salina was studied. We would like to know the selectivity of this process. Could all the carotenoids produced be extracted? And would it be possible to vary the profile of the produced carotenoids and, consequently, influence the type of carotenoids extracted? By using three different D. salina strains and three different stress conditions, we varied the profiles of the carotenoids produced. Between Dunaliella bardawil and D. salina 19/18, no remarkable differences were seen in the extraction profiles, although D. salina 19/18 seemed to be better extractable. D. salina 19/25 was not “milkable” at all. The milking process could only be called selective for secondary carotenoids in case gentle mixing was used. In aerated flat-panel photobioreactors, extraction was much better, but selectiveness decreased and also chlorophyll and primary carotenoids were extracted. This was possibly related to cell damage due to shear stress.  相似文献   

17.
The enhanced interest in carotenoid research arises partly because of their application in the food and health industries and partly because of the necessity to find a commercially viable natural source for their mass production. The bottlenecks in finding a natural source of carotenoids which can compete with the synthetic products is the mass production of the organism that produces carotenoids, cell harvesting and extraction methods of carotenoids. The microalga Botryococcus braunii is an interesting organism for its commercial value as a rich source of carotenoids. It contains lutein as major carotenoid which is considered to be one of the beneficial carotenoids in human health applications. The current paper reviews the status of B. braunii as an alternative source of carotenoid production on the commercial scale addressing aspects like cultures of algae, factors that enhance the production and accumulation of carotenoids, cell harvesting methods, and carotenoid extraction. The paper also presents an overview of identification, characterization and structural elucidation of carotenoids from B. braunii and their bioactivity.  相似文献   

18.
A carotenoid-accumulating bacterium isolated from soil, identified as a Sphingomonas sp., grew at 0.18 h(-1) and produced 1.7 mg carotenoids g(-1) dry cell, among which beta-carotene (29% of total carotenoids) and nostoxanthin (36%). A mutant strain, obtained by treatment with ethyl methanesulfonate, accumulated up to 3.5 mg carotenoids g(-1) dry cell. Accumulation of beta-carotene by this strain depended on the oxygenation of the growth medium, with maximal accumulation (89%) occurring under limiting conditions. Beta-carotene accumulation could be further enhanced by incubating the cells in the presence of glycerol (either not or only slowly assimilated) and yeast extract resulting in an accumulation of 5.7 mg beta-carotene g(-1) dry cell wt. The strain used lactose as carbon source with similar biomass and carotenoid production, providing a viable alternative use for cheese whey ultra-filtrate.  相似文献   

19.
Mutants deficient in the production of bacteriochlorophyll c (Bchl c) and one mutant lacking colored carotenoids were isolated from the filamentous gliding bacterium Chloroflexus aurantiacus. Mutagenesis was achieved by using UV radiation or N-methyl-N'-nitro-N-nitrosoguanidine. Several clones were isolated that were deficient in Bchl c synthesis. All reverted. One double mutant deficient both in Bchl c synthesis and in the synthesis of colored carotenoids under anaerobic conditions was isolated. Isolation of a revertant in Bchl c synthesis from this double mutant produced a mutant strain of Chloroflexus that grew photosynthetically under anaerobic conditions and lacked colored carotenoids. Analysis of pigment contents and growth rates of the mutants revealed a positive association between growth rate and content of Bchl c under light-limiting conditions.  相似文献   

20.
A disruptive mutant of the sll0033 gene of the cyanobacterium Synechocystis sp. PCC 6803 produced primarily cis carotenes and small amounts of all-trans carotenes, but no xanthophylls, under dark conditions. Under light conditions, however, it produced normal carotenoids, that were the same as those produced by wild-type cells grown under both light and dark conditions. When the mutant cells cultured under dark conditions were irradiated, cis-isomers of carotenes were converted to all-trans lycopene. These findings demonstrate that this gene, designated crtH, is involved in the isomerization of cis-carotenes to all-trans forms in dark conditions, and that cis-carotenes were also converted to all-trans forms under light conditions by photoisomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号