首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport pathway of specific dietary carotenoids from the midgut lumen to the silk gland in the silkworm, Bombyx mori, is a model system for selective carotenoid transport because several genetic mutants with defects in parts of this pathway have been identified that manifest altered cocoon pigmentation. In the wild-type silkworm, which has both genes, Yellow blood (Y) and Yellow cocoon (C), lutein is transferred selectively from the hemolymph lipoprotein to the silk gland cells where it is accumulated into the cocoon. The Y gene encodes an intracellular carotenoid-binding protein (CBP) containing a lipid-binding domain known as the steroidogenic acute regulatory protein-related lipid transfer domain. Positional cloning and transgenic rescue experiments revealed that the C gene encodes Cameo2, a transmembrane protein gene belonging to the CD36 family genes, some of which, such as the mammalian SR-BI and the fruit fly ninaD, are reported as lipoprotein receptors or implicated in carotenoid transport for visual system. In C mutant larvae, Cameo2 expression was strongly repressed in the silk gland in a specific manner, resulting in colorless silk glands and white cocoons. The developmental profile of Cameo2 expression, CBP expression, and lutein pigmentation in the silk gland of the yellow cocoon strain were correlated. We hypothesize that selective delivery of lutein to specific tissue requires the combination of two components: 1) CBP as a carotenoid transporter in cytosol and 2) Cameo2 as a transmembrane receptor on the surface of the cells.  相似文献   

2.
Formation of yellow-red color cocoons in the silkworm, Bombyx mori, occurs as the result of the selective delivery of carotenoids from the midgut to the silk gland via the hemolymph. This process of pigment transport is thought to be mediated by specific cellular carotenoids carrier proteins. Previous studies indicated that two proteins, Cameo2 and CBP, are associated with the selective transport of lutein from the midgut into the silk gland in Bombyx mori. However, the exact roles of Cameo2 and CBP during the uptake and transport of carotenoids are still unknown. In this study, we investigated the respective contributions of these two proteins to lutein and β-carotene transport in Bombyx mori as well as commercial cell-line. We found that tissues, expressed both Cameo2 and CBP, accumulate lutein. Cells, co-expressed Cameo2 and CBP, absorb 2 fold more lutein (P<0.01) than any other transfected cells, and the rate of cellular uptake of lutein was concentration-dependent and reached saturation. From immunofluorescence staining, confocal microscopy observation and western blot analysis, Cameo2 was localized at the membrane and CBP was expressed in the cytosol. What’s more, bimolecular fluorescence complementation analysis showed that these two proteins directly interacted at cellular level. Therefore, Cameo2 and CBP are necessarily expressed in midguts and silk glands for lutein uptake in Bombyx mori. Cameo2 and CBP, as the membrane protein and the cytosol protein, respectively, have the combined effect to facilitate the cellular uptake of lutein.  相似文献   

3.
Dietary carotenoids are absorbed in the intestine and delivered to various tissues by circulating lipoproteins; however, the mechanism underlying selective delivery of different carotenoid species to individual tissues remains elusive. The products of the Yellow cocoon (C) gene and the Flesh (F) gene of the silkworm Bombyx mori determine the selectivity for transport of lutein and β-carotene, respectively, to the silk gland. We previously showed that the C gene encodes Cameo2, a CD36 family member, which is thought to function as a transmembrane lipoprotein receptor. Here, we elucidated the molecular identity of the F gene product by positional cloning, as SCRB15, a paralog of Cameo2 with 26% amino acid identity. In the F mutant, SCRB15 mRNA structure was severely disrupted, due to a 1.4 kb genomic insertion in a coding exon. Transgenic expression of SCRB15 in the middle silk gland using the binary GAL4-UAS expression system enhanced selective β-carotene uptake by the middle silk gland, while transgenic expression of Cameo2 enhanced selective lutein uptake under the same GAL4 driver. Our findings indicate that divergence of genes in the CD36 family determines the selectivity of carotenoid species uptake by silk gland tissue and that CD36-homologous proteins can discriminate among carotenoid species.  相似文献   

4.
By using silkworms, Bombyx mori, fluorescent cocoon sex identification (FCSI) as an experimental material, direct fluorescence spectrometry of the cocoon surface indicates that the fluorescent color of silkworm cocoons is made up of two peaks of yellow and blue-purple fluorescence emission. The fluorescent difference between male and female cocoons is attributed to the differential absorption of yellow fluorescent substances by the midgut tissue of 5th instar female silkworms. Thin layer chromatography (TLC) and fluorescent spectra indicate that blue-purple fluorescent substances are composed of at least five blue-purple fluorescent pigments, and yellow fluorescent substances are made up of at least three. UV spectra and AlCl3 color reaction show that the three fluorescent yellow pigments are flavonoids or their glycosides. Silkworm FCSI is due to selective absorption or accumulation of the yellow fluorescent pigments by the posterior midgut cells of female 5th instar larvae. The cells of the FCSI silkworm midgut, especially the cylinder intestinal cells of the posterior midgut have a component which is a yellow fluorescent pigment-specific binding protein that may be vigorously expressed in the 5th instar larvae.  相似文献   

5.
The yellow color of the cocoon of the silkworm Bombyx mori is controlled by three genes, Y (Yellow haemolymph), I (Yellow inhibitor) and C (Outer‐layer yellow cocoon), which are located on linkage groups 2, 9 and 12, respectively. Taking advantage of a lack of crossing over in females, reciprocal backcrossed F1 (BC1) progeny were used for linkage analysis and mapping of the C gene using silkworm strains C108 and KY, which spin white and yellow cocoons, respectively. DNA was extracted from individual pupae and analyzed for simple sequence repeat (SSR) markers. The C gene was found to be linked to seven SSR markers. All the yellow cocoon individuals from a female heterozygous backcross (BC1 F) showed a heterozygous profile for SSR markers on linkage group 12, whereas individuals with light yellow cocoons showed the homozygous profile of the strain C108. Using a reciprocal heterozygous male backcross (BC1 M), we constructed a linkage map of 36.4 cM with the C gene located at the distal end, and the closest SSR marker at a distance of 13.9 cM.  相似文献   

6.
7.
We examined the role of carotenoid-binding protein (CBP) in yellow cocoon pigmentation. First, using yellow or white cocoon races, we investigated the linkage between the yellow pigmentation and CBP expression. CBP was expressed only in the silk gland of the yellow cocoon races, which utilize carotenoids for cocoon pigmentation. Furthermore, CBP expression in the silk glands of day 1-7 fifth instar larvae matched the period of carotenoid uptake into the silk gland. Finally, we gave double-stranded CBP RNA to Bombyx mori (B. mori) larvae to induce RNA interference. The significantly reduced expression of CBP in the silk gland of fifth instar larva was confirmed on day 4 and a decrease in yellow pigmentation was observed in the cocoon. We showed that CBP plays a key role in the yellow cocoon pigmentation caused by carotenoids.  相似文献   

8.
To understand mechanisms for the difference of uptaking and transporting the pigments between the male and female in the silkworm, Bombyx mori strain of sex-related fluorescent cocoon, the fluorescent pigments in the midgut lumen, midgut, blood, silk glands and cocoon were analyzed with thin-layer chromatography, and showed that fluorescent colors of cocoons consisted with that of blood and silk glands. The different fluorescent colors of cocoons between the male and female may be mainly caused by the difference of accumulation and transportation for fluorescent pigments in the midgut and in the silk glands. Furthermore the midgut proteins were separated with Native-PAGE, and the proteins respectively recovered from three fluorescent regions presenting on a Native-PAGE gel for the female silkworms were determined using shotgun proteomics and mass spectrometry sequencing, of which 60, 40 and 18 proteins respectively from the region 1, 2 and 3 were identified. It was found that the several kinds of low molecular mass 30 kDa lipoproteins and the actins could be detected in all three regions, troponin, 30 kDa lipoprotein and 27 kDa glycoprotein precursor could be detected in the region 2 and 3, suggesting these proteins may be fluorescent pigments binding candidates proteins. Analysis of gene ontology indicated that the identified proteins in the three regions linked to the cellular component, molecular function, and biological process categories. These results provide a new clew to understand the formation mechanism of sex-related fluorescent cocoon of silkworm.  相似文献   

9.
10.
Qualitative and quantitative differences in proteins expressed in the middle silkglands of male and female silkworm larvae that differ in silk colour were investigated by high resolution two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), followed by computer assisted image analysis. About 1000 protein spots were resolved in both the sexes and most proteins were shown to be distributed in the area from 15 kDa to 70 kDa and pH 4–8. It was found that some proteins displayed higher expression in yellow cocoon, while two proteins were only expressed in female silkworm silkgland tissue through the comparison and analysis by two-D software. These proteins especially existed in female silkworm middle silkgland tissue of yellow cocoon. Furthermore, these proteins might be involved in the expression of cocoon colour phenotype  相似文献   

11.
Imprinted genes play important roles in mammalian growth, development and behavior. The Rasgrf1 (Ras protein-specific guanine nucleotide exchange factor 1) gene has been identified as an imprinted gene in mouse and rat. In the present study, we detected its sequence, imprinting status and expression pattern in the domestic pigs. A 228 bp partial sequence located in exon 14 and a 193 bp partial sequence located in exon 1 of the Rasgrf1 gene in domestic pigs were obtained. A G/A transition, was identified in Rasgrf1 exon 14, and then, the reciprocal Berkshire × Wannan black F1 hybrid model and the RT-PCR-RFLP method were used to detect the imprinting status of porcine Rasgrf1 gene at the developmental stage of 1-day-old. The expression profile results indicated that the porcine Rasgrf1 mRNA was highly expressed in brain, pituitary and pancreas, followed by kidney, stomach, lung, testis, small intestine, ovary, spleen and liver, and at low levels of expression in longissimus dorsi, heart, and backfat. The expression levels of Rasgrf1 gene in brain, pituitary and pancreas tissues were significantly different between the two reciprocal F1 hybrids. Imprinting analysis showed that porcine Rasgrf1 gene was maternally expressed in the liver, small intestine, paternally expressed in the lung, but biallelically expressed in brain, heart, spleen, kidney, stomach, pancreas, backfat, testis, ovary, longissimus dorsi and pituitary tissues.  相似文献   

12.
The receptor for diuretic hormone 31 (DH31R) was identified in the silkworm Bombyx mori. A heterologous expression system revealed that an orphan G-protein coupled receptor, BNGR-B1, responded to DH31 and upregulated the intracellular cAMP level. DH31R (BNGR-B1) was predominantly expressed in the anterior silk gland, midgut, and ovary, whereas DH31 was predominantly expressed in the central nervous system and midgut.  相似文献   

13.
The tropical tasar silkworm, Antheraea mylitta, is a semi-domesticated vanya silk-producing insect of high economic importance. To date, no molecular marker associated with cocoon and shell weights has been identified in this species. In this report, we identified a randomly amplified polymorphic DNA (RAPD) marker and examined its inheritance, and also developed a stable diagnostic sequence-characterized amplified region (SCAR) marker. Silkworms were divided into groups with high (HCSW) and low (LCSW) cocoon and shell weights, and the F2 progeny of a cross between these two groups were obtained. DNA from these silkworms was screened by PCR using 34 random primers and the resulting RAPD fragments were used for cluster analysis and discriminant function analysis (DFA). The clustering pattern in a UPGMA-based dendogram and DFA clearly distinguished the HCSW and LCSW groups. Multiple regression analysis identified five markers associated with cocoon and shell weights. The marker OPW16905 bp showed the most significant association with cocoon and shell weights, and its inheritance was confirmed in F2 progeny. Cloning and sequencing of this 905 bp fragment showed 88% identity between its 134 nucleotides and the Bmc-1/Yamato-like retroposon of A. mylitta. This marker was further converted into a diagnostic SCAR marker (SCOPW 16826 bp). The SCAR marker developed here may be useful in identifying the right parental stock of tasar silk-worms for high cocoon and shell weights in breeding programs designed to enhance the productivity of tasar silk.  相似文献   

14.
家蚕黄血抑制基因的SSR定位   总被引:6,自引:1,他引:5  
李霞  李木旺  郭秋红  徐安英  黄勇平  郭锡杰 《遗传》2008,30(8):1039-1042
家蚕黄茧性状主要由3个基因控制, 分别是黄血基因(Yellow blood, Y), 黄血抑制基因(Yellow inhibitor, I)和黄茧基因(Out-layer yellow cocoon, C)。I基因阻止类胡萝卜素从中肠上皮细胞到血淋巴的转运, 是天然黄茧形成过程中的重要控制基因。利用家蚕雌性不发生交换的特点, 采用黄血黄茧品系KY和白血白茧品系巴格达特(Ba)组配正反交群体(Ba×KY)×KY和KY×(Ba×KY), 分别记作BC1F和BC1M, 根据已经构建的家蚕SSR分子标记连锁图谱对I基因进行了定位及连锁分析。筛选出3个与I基因连锁的SSR标记。BC1F群中的所有白血个体均表现出与(Ba×KY) F1相同的杂合型带型; 而所有黄血个体带型与亲本KY一致, 为纯合型。利用另一个群体BC1M构建了关于I基因的遗传连锁图, 连锁图的遗传距离为38.4 cM, 与I基因最近的引物为S0904, 图距为7.4 cM。  相似文献   

15.
类胡萝卜素结合蛋白(CBP)是唯一已被确认与家蚕黄色茧形成儡切相关的主要蛋白质。文章选择12个有色茧和白茧蚕品种, 调查了cbp基因结构、转录产物mRNA类型和丝腺类胡萝卜素紫外可见光吸收特征与其茧色的关系。结果表明: 黄色茧蚕品种含有2种或3种cbp基因结构, 同时转录具有CBP功能性的完整 mRNA和缺少第2外显子的mRNA; 绿茧品种间cbp基因结构存在差异, 转录缺少第2外显子的mRNA; 白茧蚕品种cbp基因只有1种结构, 转录缺少第2外显子的mRNA。文章在黄茧品种中新发现的cbp基因第1内含子序列可能具有茧色品种特异性, 家蚕黄茧品种丝腺的紫外可见吸收光谱特征显著区别于绿茧和白茧品种, cbp基因的结构和表达特征与家蚕茧色密切相关。  相似文献   

16.
17.
Abstract To understand the evolutionary conservation of the gene expression mechanism and secretion machinery between Antheraea and Bombyx fibroins, we introduced the genomic A. yamamai fibroin gene into the domesticated silkworm, B. mori. The spliced A. yamamai fibroin mRNA appeared only in the posterior region of the silk gland of the transgenic silkworm, suggesting that the functions of the fibroin promoter region and the splicing machinery are conserved between these two species. The A. yamamai fibroin protein was detected in the lumen of the silk gland of the transgenic silkworm, albeit at lower levels compared with the B. mori‐type fibroin. We found a strong degeneration of the posterior region of the silk gland of the transgenic silkworm. As a result, the cocoon shell weight was much lower in the transgenic silkworm than in the non‐transgenic line. These results indicate that the promoter function and splicing machinery are well conserved between A. yamamai and B. mori but that the secretion mechanism of fibroin is diversified between the two.  相似文献   

18.
Ras1(CA) overexpression in the posterior silk gland improves silk yield   总被引:1,自引:0,他引:1  
Ma L  Xu H  Zhu J  Ma S  Liu Y  Jiang RJ  Xia Q  Li S 《Cell research》2011,21(6):934-943
Sericulture has been greatly advanced by applying hybrid breeding techniques to the domesticated silkworm, Bombyx mori, but has reached a plateau during the last decades. For the first time, we report improved silk yield in a GAL4/UAS transgenic silkworm. Overexpression of the Ras1(CA) oncogene specifically in the posterior silk gland improved fibroin production and silk yield by 60%, while increasing food consumption by only 20%. Ras activation by Ras1(CA) overexpression in the posterior silk gland enhanced phosphorylation levels of Ras downstream effector proteins, up-regulated fibroin mRNA levels, increased total DNA content, and stimulated endoreplication. Moreover, Ras1 activation increased cell and nuclei sizes, enriched subcellular organelles related to protein synthesis, and stimulated ribosome biogenesis for mRNA translation. We conclude that Ras1 activation increases cell size and protein synthesis in the posterior silk gland, leading to silk yield improvement.  相似文献   

19.
Larvae of Gibbium psylloides secrete a peritrophic membrane (PM) which has a mainly orthogonal fibrillar structure, but this merges freely with hexagonal and random arrangements of microfibres. The random arrangement predominates in PM used for cocoons. Shortly before the cocoon is constructed the PM no longer forms a tube but collapses and is compressed in the gut and emerges from the anus as a flat thread. This thread is wound around the larva and forms the cocoon ‘silk’. Both normal and cocoon-forming PMs are produced mainly in the posterior midgut and their constituent microfibres appear first at the tips of the microvilli which form the brush border of the midgut cells.  相似文献   

20.
The cocoon of Antheraea pernyi is constructed in four successive phases, as resolved through movement recordings and time-lapse cinematography and cinefluorography: (1) scaffolding and peduncle (9·2 hr), (2) outer cocoon (13·9 hr), (3) cocoon impregnation (0·7 hr), and (4) inner cocoon (26·9 hr). The caterpillar reverses spinning direction at frequencies characteristic for each phase. The number of cycles (360-degree turns) within a phase is relatively constant from individual to individual, although the length of phase two varies seasonally. During cocoon impregnation the larva executes turns in rapid succession, ensuring the even distribution of a hindgut exudate which coats the cocoon with crystals and speeds tanning of the silk. In the second and fourth phases intracycle behaviour consists of extension-recovery loops of the anterior segments, each followed by a repositioning of the abdomen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号