首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 239 毫秒
1.
Irradiation from γ-rays can cause severe damage to bone marrow and hematopoietic tissues. Presently, the most effective method available to treat severe hematopoietic injury is a bone marrow transplant (BMT). Allogeneic BMT is a difficult technique to perform due to the differences in human leukocyte antigen proteins between the donor and recipient, with acute graft-versus-host disease being a major complication of the technique. This limits the widespread applicability of allogeneic BMT. To develop a novel treatment for acute hematopoietic damage, we transplanted bone marrow derived mesenchymal stem cells (MSCs) into recipient mice and treated them with recombinant human bone morphogenetic protein 2 (rhBMP2) to investigate whether MSCs and rhBMP2 could additively promote the restoration of hematopoietic function. MSCs are vital components of the hematopoietic microenvironment that supports hematopoiesis, and bone morphogenic protein is a key factor in hematopoiesis. The 30-day survival rate as well as the numbers of nucleated cells, bone marrow colony-forming unit-granulocyte macrophages, spleen colony-forming units and peripheral blood cells were enumerated. The results showed that, after γ-irradiation and transplantation, MSCs and rhBMP2 additively promoted and improved hematopoietic restoration and function in vivo and in vitro. This additive effect of MSCs and rhBMP2 may one day provide a novel means of treating acute hematopoietic damage.  相似文献   

2.
通过同种基因型小鼠构建造血干细胞移植模型,将预处理的全骨髓单个核细胞或c-Kit+造血干细胞移植至致死剂量照射的受体小鼠体内,动态监测移植2~16周后受体小鼠体内供体来源细胞造血重建以及嵌合情况,以期揭示不同群体的供体细胞以及预处理等因素对小鼠造血干细胞移植后造血重建的影响。实验结果显示,移植后早期(2周)全骨髓单个核细胞组髓系比例要高于c-Kit+细胞移植组,但全骨髓移植组受体小鼠呈现出较大的移植后不良反应,出现脱毛、食欲不振以及体重减轻的症状。c-Kit+细胞移植组在淋系重建上要早于全骨髓移植组,供体细胞的嵌合植入也早于全骨髓移植组,但两组实验组最终均能完成造血重建过程。实验结果表明c-Kit+细胞移植组在移植后能够较快地实现供体细胞植入,进而开始造血重建,且c-Kit+ 细胞移植组的不良反应要低于全骨髓移植组。结果说明在整体造血重建效果上c-Kit+细胞移植组要优于全骨髓移植组。  相似文献   

3.
Although physiological development of human lymphoid subsets has become well documented in humanized mice, in vivo development of human myeloid subsets in a xenotransplantation setting has remained unevaluated. Therefore, we investigated in vivo differentiation and function of human myeloid subsets in NOD/SCID/IL2rγ(null) (NSG) mouse recipients transplanted with purified lineage(-)CD34(+)CD38(-) cord blood hematopoietic stem cells. At 4-6 mo posttransplantation, we identified the development of human neutrophils, basophils, mast cells, monocytes, and conventional and plasmacytoid dendritic cells in the recipient hematopoietic organs. The tissue distribution and morphology of these human myeloid cells were similar to those identified in humans. After cytokine stimulation in vitro, phosphorylation of STAT molecules was observed in neutrophils and monocytes. In vivo administration of human G-CSF resulted in the recruitment of human myeloid cells into the recipient circulation. Flow cytometry and confocal imaging demonstrated that human bone marrow monocytes and alveolar macrophages in the recipients displayed intact phagocytic function. Human bone marrow-derived monocytes/macrophages were further confirmed to exhibit phagocytosis and killing of Salmonella typhimurium upon IFN-γ stimulation. These findings demonstrate the development of mature and functionally intact human myeloid subsets in vivo in the NSG recipients. In vivo human myelopoiesis established in the NSG humanized mouse system may facilitate the investigation of human myeloid cell biology including in vivo analyses of infectious diseases and therapeutic interventions.  相似文献   

4.
5.
A study of the regenerative potential of bone marrow cells of donor mice that express the enhanced green fluorescent protein was conducted in mice irradiated at a dose of 7 Gy. Expression of this protein allowed us to carry out monitoring of the presence of donor cells in recipient blood over the entire lifespan of the recipient. The lifespan of young recipients increased by 93% after transplantation; for old recipients it increased by 15%. Total acceptance of the bone marrow, spleen, thymus, and blood of the recipient with donor bone marrow cells was demonstrated over the entire life of the recipient. Only the donor colonies were detected with the studied irradiation dose and number of transplanted cells (11.7 ± 0.4) · 106 on the spleen surface. The percentage of bone marrow and spleen cells that expressed the CD117 and CD34 stem cell markers in the recipient mice was above the control level for a long period of time after the irradiation. More than half of the cells with CD117, CD34, CD90.2, and CD45R/B220 phenotypes in the studied organs were donor cells. Further detailed study of the peculiarities of the engraftment of bone marrow cells, both without preliminary treatment of recipients and after the effects of extreme factors, will allow improvement of the methods of cell therapy.  相似文献   

6.
The transplanted limb contains bone marrow tissue. The hematopoietic cells contained in the bone of the graft normally differentiate after transplantation and can be released to the recipient. The cells migrate to the recipient bone marrow cavities and lymphoid organs. This causes the immune reaction between the donor and the recipient, which develops not only in the graft itself but also in the recipient immune organs where donor bone marrow cells home. The purpose of this study was to investigate the process of migration of the hematopoietic cells from the donor limb to the recipient bone marrow cavities and lymphoid tissues. The questions the authors asked were: what is the rate of release of bone marrow cells from the transplanted bone, where do the released bone marrow cells home in the recipient, how fast are donor bone marrow cells rejected by the recipient, and can some bone marrow cells homing in the recipient tissues survive and create a state of microchimerism. Experiments were performed on Brown Norway and Lewis inbred rat strains (n = 30). Limb donors received intravenous chromium-51-labeled bone marrow cells. Twenty-four hours later, the limb with homing labeled bone marrow cells was transplanted to an allogeneic or syngeneic recipient. The rate of radioactivity of bone marrow cells released from the graft and homing in recipient tissues was measured after another 24 hours. To eliminate factors adversely affecting homing such as the "crowding effect" and allogeneic elimination of bone marrow cells by natural killer cells, total body irradiation and antiasialo-GM1 antiserum were applied to recipients before limb transplantation. In rats surviving with the limb grafts for 7 and 30 days, homing of donor bone marrow cells was studied by specific labeling of donor cells and flow cytometry as well as by detecting donor male Y chromosome. The authors found that transplantation of the limb with bone marrow in its natural spatial relationship with stromal cells and blood perfusion brings about immediate but low-rate release of bone marrow cells and their migration to recipient bone marrow and lymphoid tissues. Large portions of allogeneic bone marrow cells are rapidly destroyed in the mechanism of allogeneic elimination by radioresistant but antiasialo-GM1-sensitive natural killer cells. Some transplanted bone marrow cells remain in the recipient's tissues and create a state of cellular and DNA microchimerism. A low number of physiologically released donor bone marrow cells do not seem to adversely affect the clinical outcome of limb grafting. Quite the opposite, a slight prolongation of the graft survival time was observed.  相似文献   

7.
目的研究Exo-1对端粒酶缺失小鼠造血微环境衰老的影响。方法以端粒酶基因敲除小鼠(Terc-/-)和Exo-1基因敲除小鼠(Exo-1-/-)杂交,并进一步互交产生第三代端粒酶基因敲除小鼠(G3Terc-/-)以及第三代Terc和Exo-1双基因敲除小鼠(G3Terc-/-Exo-1-/-)。以CD45.1野生型小鼠的骨髓细胞为供体,以2月龄G3Terc-/-或G3Terc-/-Exo-1-/-小鼠为受体,进行骨髓移植。在受体小鼠9月龄时,取骨髓、脾脏、胸腺、外周血等组织器官的细胞进行流式分析,研究G3Terc-/-和G3Terc-/-Exo-1-/-受体小鼠中的野生型供体来源的造血干细胞的发育分化。结果同G3Terc-/-小鼠相比,G3Terc-/-Exo-1-/-双基因敲除受体小鼠骨髓中野生型供体来源的B220+细胞比例升高,前体B细胞的比例也明显升高;脾脏B220+细胞的比例明显升高;胸腺发育正常;外周血中B220+细胞比例升高。结论 Exo-1缺失延缓了端粒酶基因敲除小鼠造血系统微环境的衰老,从而逆转了端粒功能障碍引起的骨髓造血干细胞发育分化异常。  相似文献   

8.
Elimination of porcine hemopoietic cells by macrophages in mice.   总被引:2,自引:0,他引:2  
The difficulty in achieving donor hemopoietic engraftment across highly disparate xenogeneic species barriers poses a major obstacle to exploring xenograft tolerance induction by mixed chimerism. In this study, we observed that macrophages mediate strong rejection of porcine hemopoietic cells in mice. Depletion of macrophages with medronate-encapsulated liposomes (M-liposomes) markedly improved porcine chimerism, and early chimerism in particular, in sublethally irradiated immunodeficient and lethally irradiated immunocompetent mice. Although porcine chimerism in the peripheral blood and spleen of M-liposome-treated mice rapidly declined after macrophages had recovered and became indistinguishable from controls by wk 5 post-transplant, the levels of chimerism in the marrow of these mice remained higher than those in control recipients at 8 wks after transplant. These results suggest that macrophages that developed in the presence of porcine chimerism were not adapted to the porcine donor and that marrow-resident macrophages did not phagocytose porcine cells. Moreover, M-liposome treatment had no effect on the survival of porcine PBMC injected into the recipient peritoneal cavity, but was essential for the migration and relocation of these cells into other tissues/organs, such as spleen, bone marrow, and peripheral blood. Together, our results suggest that murine reticuloendothelial macrophages, but not those in the bone marrow and peritoneal cavity, play a significant role in the clearance of porcine hemopoietic cells in vivo. Because injection of M-liposomes i.v. mainly depletes splenic macrophages and liver Kupffer cells, the spleen and/or liver are likely the primary sites of porcine cell clearance in vivo.  相似文献   

9.
本文采用Y染色体特异的性别决定基因(Sry)作为新的细胞遗传标志,通过PCR技术来追踪观察造血干细胞的增殖与分化性能。该方法具有简便、灵敏和特异等优点。雌性受体小鼠输注雄鼠骨髓细胞和13天脾结节(CFU-S13)细胞后,Sry PCR测试受体小鼠的CFU-S结果表明,它们均为供体来源的XY细胞。用Sry PCR骨髓细胞和骨髓中脾结节生成细胞(CPU-S)的长期重建造血能力,结果表明,在存活雌性小鼠  相似文献   

10.
To understand the role of a gene in the development of colitis, we compared the responses of wild-type mice and gene-of-interest deficient knockout mice to colitis. If the gene-of-interest is expressed in both bone marrow derived cells and non-bone marrow derived cells of the host; however, it is possible to differentiate the role of a gene of interest in bone marrow derived cells and non- bone marrow derived cells by bone marrow transplantation technique. To change the bone marrow derived cell genotype of mice, the original bone marrow of recipient mice were destroyed by irradiation and then replaced by new donor bone marrow of different genotype. When wild-type mice donor bone marrow was transplanted to knockout mice, we could generate knockout mice with wild-type gene expression in bone marrow derived cells. Alternatively, when knockout mice donor bone marrow was transplanted to wild-type recipient mice, wild-type mice without gene-of-interest expressing from bone marrow derived cells were produced. However, bone marrow transplantation may not be 100% complete. Therefore, we utilized cluster of differentiation (CD) molecules (CD45.1 and CD45.2) as markers of donor and recipient cells to track the proportion of donor bone marrow derived cells in recipient mice and success of bone marrow transplantation. Wild-type mice with CD45.1 genotype and knockout mice with CD45.2 genotype were used. After irradiation of recipient mice, the donor bone marrow cells of different genotypes were infused into the recipient mice. When the new bone marrow regenerated to take over its immunity, the mice were challenged by chemical agent (dextran sodium sulfate, DSS 5%) to induce colitis. Here we also showed the method to induce colitis in mice and evaluate the role of the gene of interest expressed from bone-marrow derived cells. If the gene-of-interest from the bone derived cells plays an important role in the development of the disease (such as colitis), the phenotype of the recipient mice with bone marrow transplantation can be significantly altered. At the end of colitis experiments, the bone marrow derived cells in blood and bone marrow were labeled with antibodies against CD45.1 and CD45.2 and their quantitative ratio of existence could be used to evaluate the success of bone marrow transplantation by flow cytometry. Successful bone marrow transplantation should show a vast majority of donor genotype (in term of CD molecule marker) over recipient genotype in both the bone marrow and blood of recipient mice.  相似文献   

11.
Regulatory CD4(+) CD25(+) FoxP3(+) T cells (T(regs) ) suppress immunological reactions. However, the effect of adding T(regs) to hematopoietic stem cell grafts on recovery and graft versus host disease (GvHD) is unknown. T(regs) from splenocytes of C57Bl/6 and Balb/c wild-type mice were isolated by MACS separation and analyzed by flow cytometry. Using a murine syngeneic transplantation model that clearly distinguishes between donor and host hematopoiesis, we showed that co-transplantation of bone marrow cells (BMCs) with high levels of T(regs) leads to a 100% survival of the mice and accelerates the hematopoietic recovery significantly (full donor chimerism). In allogeneic transplantation, bone marrow and T(regs) co-transplantation were compared to allogeneic bone marrow transplantation with or without the addition of splenocytes. Survival, leukocyte recovery, chimerism at days -2, 19, 33, and 61 for murine CD4, human CD4, HLA-DR3, murine CD3, murine CD8, murine Balb/c-H2K(d) , murine C57Bl/6-H2K(b) , and GvHD appearance were analyzed. Allogeneic bone marrow transplantation requires the addition of splenocytes to reach engraftment. Mice receiving grafts with bone marrow, splenocytes and high levels of allogeneic T(regs) died within 28 days (hematopoietic failure). Here, we show also detailed flow cytometric data reagarding analysis of chimerism after transplantation in unique murine hematopoietic stem cell transplantation models. Our findings showed that the syngeneic co-transplantation of CD4(+) , CD25(+) , FoxP3(+) T-cells and BMCs induced a stimulating effect on reconstitution of hematopoiesis after irradiation. However, in the allogeneic setting the co-transplantation of T(regs) aggravates the engraftment of transplanted cells.  相似文献   

12.
Donor NK cells could promote engraftment by suppressing host alloreactive responses during allogeneic bone marrow transplantation (allo-BMT). The biological activity of NK cells could be significantly enhanced by IL-15. The current study attempted to evaluate the effect of donor NK cells and IL-15 administration on engraftment and immune reconstitution in a murine nonmyeloablative allo-BMT model. Mice infused with donor NK cells and treated with IL-15 during nonmyeloablative allo-BMT resulted in increased donor engraftment compared with either treatment alone. The number of donor-derived cell subsets also increased in the spleen of the recipient mice with combination treatment. The alloreactivity to donor type Ags was significantly reduced in the recipient mice with donor NK cell infusion and IL-15 treatment, which was manifested by decreased proliferation and IL-2 secretion of splenocytes from recipient mice in response to donor type Ags in MLR and decreased capacity of the splenocytes killing donor type tumor targets. We subsequently exposed recipient mice to reduced irradiation conditioning and showed that donor NK cell infusion and hydrodynamic injection-mediated IL-15 expression could synergistically promote donor engraftment and suppress alloreactivity during nonmyeloablative allo-BMT. Infusion of CFSE-labeled donor CD45.1(+) NK cells demonstrated that IL-15 could enhance the infused donor NK cell proliferation and function in vivo. IL-15 treatment also promoted donor bone marrow-derived NK cell development and function. Thus, donor NK cell infusion and IL-15 treatment could synergistically promote the engraftment and the development of donor-derived cell subsets and suppress the host alloresponse in a murine nonmyeloablative allo-BMT model.  相似文献   

13.
Peripheral blood leukocytosis and an increase of mature forms of neutrophils and monocytes in the bone marrow, as well as an improvement of the oxygen supply of the bone marrow cells (by the data of polarographic studies) followed the intraperitoneal injections of rat peritoneal macrophage destruction products (MDP) to the recipient rats. Analogous changes were obtained in the bone marrow in case of intraperitoneal injection of the cytotoxic quartz dust particles. Having been injected intraperitoneally to donor CBA mice, the MDPs strikingly stimulated the glanulocytopoietic colonies formation in the spleen of the recipient CBA mice X-irradiated with a lethal dose and then injected intravenously with the bone marrow of spleen tissue suspensions obtained from the donors. The results obtained are discussed from the aspect of a possible role of the destroyed tissue macrophages in the formation of a colony-stimulating factor in the auto-control of the phagocytic responses.  相似文献   

14.
Allogeneic chimeras are valuable tools for studies of complex immune cell interactions in vivo. Mice with severe combined immune deficiency (scid) should be ideal hosts for chimerism with allogeneic bone marrow cells as these animals lack mature T and B lymphocytes capable of reacting against donor alloantigens. However, it has been difficult to achieve full reconstitution of adult scid mice even using coisogenic bone marrow grafts without prior irradiation of the recipient. We explored ways to generate complete reconstitution of scid mice with allogeneic bone marrow. Unirradiated adult scid recipients of allogeneic bone marrow were only marginally reconstituted. Adult scid mice pretreated with 250 R were reconstituted with allogeneic bone marrow as measured by serum IgM concentration, peripheral lymphoid cellularity, and mitogen responses, but a potentially important immunologic deficit was found in these mice: 250 R caused a 70% loss of scid macrophages and dendritic cells which persisted at least 5 months. By contrast, when scid mice were injected i.p. with allogeneic bone marrow within the first 24 h after birth, rapid and complete reconstitution of both T and B cell lineages was achieved, and the animals had APC that were both donor and host in origin. Considering the extent and duration of engraftment (43 wk) by allogeneic cells in neonatally transplanted scid mice, it was anticipated that their bone marrow would be chimeric. However, the bone marrow contained very few donor-derived cells, suggesting that lymphopoiesis may be taking place in other organs in these chimeras.  相似文献   

15.
The acute graft-versus-host disease (GVHD) generated in BDF1 mice by the injection of spleen cells from the C57BL/6 parental strain induces a direct cell-mediated attack on host lymphohematopoietic populations, resulting in the reconstitution of the host with donor hematopoietic stem cells. We examined the effect of GVHD on the donor and host hematopoiesis in parental-induced acute GVHD. The bone marrow was hypoplastic and the number of hematopoietic progenitor cells significantly decreased at 4 weeks after GVHD induction. However, extramedullary splenic hematopoiesis was present and the number of hematopoietic progenitor cells in the spleen significantly increased at this time. Fas expression on the host spleen cells and bone marrow cells significantly increased during weeks 2 to 8 of GVHD. Host cell incubation with anti-Fas Ab induced apoptosis, and the number of hematopoietic progenitor cells decreased during these weeks. A significant correlation between the augmented Fas expression on host bone marrow cells and the decreased number of host bone marrow cells by acute GVHD was observed. Furthermore, the injection of Fas ligand (FasL)-deficient B6/gld spleen cells failed to affect host bone marrow cells. Although Fas expression on repopulating donor cells also increased, Fas-induced apoptosis by the repopulating donor cells was not remarkable until 12 weeks, when more than 90% of the cells were donor cells. The number of hematopoietic progenitor cells in the bone marrow and the spleen by the repopulating donor cells, however, decreased over an extended time during acute GVHD. This suggests that Fas-FasL interactions may regulate suppression of host hematopoietic cells but not of donor hematopoietic cells. Hematopoietic dysfunctions caused by the reconstituted donor cells are independent to Fas-FasL interactions and persisted for a long time during parental-induced acute GVHD.  相似文献   

16.
We have longitudinally followed the major histocompatibility complex (MHC) restrictions that govern the response of T lymphocytes to specific Ag in a child with severe combined immunodeficiency who was successfully transplanted by using T cell depleted haploidentical maternal bone marrow cells and immunized shortly afterwards with tetanus toxoid (TT) Ag. In the first year post-transplant, monocytes were of both donor and recipient origin whereas T and B cells were of donor origin. Three years after transplant, all monocytes and T and B cells were of donor origin. T lymphocytes taken from the child at that time and depleted in vitro of alloreactivity to paternal Ag proliferated in response to TT presented by maternal as well as paternal monocytes. A TT-specific T cell line established from these cells in the presence of maternal monocytes cooperated with maternal but not with paternal monocytes, whereas a TT-specific T cell line established in the presence of paternal monocytes cooperated with paternal but not with maternal monocytes and with monocytes derived from a paternal uncle who shared the haplotype inherited by the recipient from her father. These results show that long-term memory T cells restricted to recipient MHC Ag not shared with the bone marrow donor continue to circulate long after the disappearance of accessory cells of recipient origin. These T cells could potentially participate in a secondary immune response because they were shown to recognize TT presented by recipient fibroblasts induced to express class II MHC molecules following treatment with IFN-gamma.  相似文献   

17.
The transfer of listeria-immune splenocytes into non-immune mice markedly increases host resistance to listeriosis. To study the mechanism for this enhancement, we compared the inflammatory response to infection in nonimmune and adoptively immunized mice. Despite much better containment of bacterial growth, adoptively immunized animals accumulated significantly fewer phagocytes (neutrophils and macrophages) in the spleen and liver than controls. Immune T cells not only inhibited phagocyte accumulation but also reduced the in vitro anti-listerial activity of splenocytes. Significant differences in phagocyte accumulation were observed even when the initial listeria dose was adjusted to produce comparable spleen listeria loads in immune and non-immune animals. However, bone marrow and peripheral blood phagocyte counts were similar in both groups. Depletion of Lyt-2+ cells (using mAb and C) from donor splenocytes prevented the transfer of protection and increased phagocyte accumulation without altering listeria-dependent IFN-gamma production by donor or recipient splenocytes in vitro. L3T4 depletion did not affect host resistance or phagocyte accumulation even though it reduced in vitro interferon production by donor cells. Hence the different effects of L3T4+ and Lyt-2+ cells in vivo cannot be explained simply by variations in IFN production. We suggest this paradoxical suppression of phagocyte accumulation during adoptive transfer may reflect lysis of bacteria-laden phagocytes by listeria-specific Lyt-2+ cells in vivo. Selective destruction of older, heavily infected cells might contribute to host resistance by eliminating a potential site for intracellular proliferation of bacteria.  相似文献   

18.
刘存仁  贺福初 《生理学报》1997,49(3):255-260
本文选择Y染色体特异的性别决定基因作为新的细胞遗传标志,采用PCR技术研究了小鼠造血干细胞的增殖与分化性能。将雄鼠骨髓细胞输注给经致死剂量射线照射的雌性受体小鼠、PCR测试结果表明,所有CFU-S均为供体起源。供体来源的CFU-S在其输入体内后,可通过增殖,分化形成各系造血细胞,但CFU-S中的纤维母细胞和CFU-S重建造血后受体小鼠骨髓中的纤维母细胞均为受体起源。由此可见,小鼠骨髓中的CFC-S  相似文献   

19.
IL-1 is considered the primary mediator of the acute phase response. One of the characteristic manifestations of this response is early neutrophilia that is probably caused by release of mature neutrophils from the bone marrow into the peripheral blood. In the present study, we assessed whether IL-1 had a similar releasing effect on the number of circulating progenitor cells and stem cells. Female BALB/c mice were injected i.p. with increasing (0.1-1.0 micrograms/mouse) concentrations of rhu-IL-1 alpha. IL-1 injection resulted in a marked dose-dependent increase in the number of polymorphonuclear neutrophils, granulocyte-macrophage colony-forming units (CFU-GM), and cells forming spleen colonies (CFU-S day 8 and day 12). The maximal increase was found at 4 to 8 h after injection of 1 micrograms IL-1 per mouse, yielding a mean fivefold elevation in neutrophil count, and a mean 30-fold and 10-fold increase in the number of circulating CFU-GM and CFU-S, respectively. In a subsequent series of experiments, lethally irradiated (8.5 Gy) female recipient animals were transplanted with 5 x 10(5) blood mononuclear cells derived from male IL-1-treated animals. Long-term survival was obtained in 68% of mice transplanted with peripheral blood cells derived from donor animals at 6 h after a single injection of 1 micrograms IL-1. The mean number of circulating CFU-GM in these donor animals was 557/ml blood. At 6 mo after transplantation, greater than 95% of the bone marrow cells were of male origin, as determined using in situ hybridization with a Y-chromosome specific probe. In contrast, long-term survival was reached in less than 10% of mice transplanted with an equal number of blood cells derived from saline-treated controls or donor animals treated with a dose of 0.1 micrograms IL-1. These results indicate that a single injection of IL-1 induces a shift of hematopoietic progenitor cells and marrow repopulating cells into peripheral blood and that these cells can be used to rescue and permanently repopulate the bone marrow of lethally irradiated recipients.  相似文献   

20.
Murine bone marrow was infected with a high-titer retrovirus vector containing the human beta-globin and neomycin phosphotransferase genes. Anemic W/Wv mice were transplanted with infected marrow which in some cases had been exposed to the selective agent G418. Human beta-globin expression was monitored in transplanted animals by using a monoclonal antibody specific for human beta-globin polypeptide, and hematopoietic reconstitution was monitored by using donor and recipient mice which differed in hemoglobin type. In some experiments all transplanted mice expressed the human beta-globin polypeptide for over 4 months, and up to 50% of peripheral erythrocytes contained detectable levels of polypeptide. DNA analysis of transplanted animals revealed that virtually every myeloid cell contained a provirus. Integration site analysis and reconstitution of secondary marrow recipients suggested that every mouse was reconstituted with at least one infected stem cell which had extensive repopulation capability. The ability to consistently transfer an active beta-globin gene into mouse hematopoietic cells improves the feasibility of using these techniques for somatic cell gene therapy in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号