首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In haplo-identical hematopoietic transplantation, donor vs. recipient natural killer (NK) cell alloreactivity derives from a mismatch between donor NK clones bearing inhibitory killer cell Ig-like receptors (KIR) for self-HLA class I molecules and their HLA class I ligands (KIR ligands) on recipient cells. When faced with mismatched allogeneic targets, these NK clones sense the missing expression of self-HLA class I alleles and mediate alloreactions. KIR ligand mismatches in the GvH direction trigger donor vs. recipient NK cell alloreactions, which improve engraftment, do not cause GvHD and control relapse in AML patients . The mechanism whereby alloreactive NK cells exert their benefits in transplantation has been elucidated in mouse models. The infusion of alloreactive NK cells ablates (i) leukemic cells, (ii) recipient T cells that reject the graft and (iii) recipient DC that trigger GvHD, thus protecting from GvHD.  相似文献   

2.
Purified NK cells were obtained from mice with severe combined immune deficiency and were activated with human IL-2 (hrIL-2) in vitro to determine if, once activated, these cells could be transferred with compatible bone marrow cells (BMC) and promote marrow engraftment in irradiated allogeneic recipients. After culture with hrIL-2, these cells maintained a phenotypic and lytic spectrum consistent with a pure population of activated NK cells. These activated NK cells were then adoptively transferred with the donor BMC and rhIL-2 into lethally irradiated allogeneic hosts. The addition of NK cells with the BMC allowed for more rapid hematopoietic engraftment as determined through short term studies, and greater donor-derived chimerism with accelerated reconstitution of the B cell population as determined with long term analysis. No evidence of graft-vs-host disease was detected in the recipients receiving the activated NK cells with allogeneic T cell replete BMC and hrIL-2. The mechanism by which the transferred NK cells improved BMC engraftment was at least partly through the abrogation of the host effector cell's ability to mediate resistance to the marrow graft. Thus, the administration of donor-type activated NK cells with BMC and hrIL-2 may significantly augment hematopoietic engraftment and immune reconstitution in the clinical setting of allogeneic BMT without giving rise to graft-vs-host disease.  相似文献   

3.
NK cell tolerance in mixed allogeneic chimeras   总被引:11,自引:0,他引:11  
Alterations in inhibitory receptor expression on NK cells have been detected in mixed allogeneic chimeras and in mosaic MHC class I-expressing transgenic mice. However, it is not known whether or not NK cells are tolerant to host and donor Ags in mixed chimeras. In vitro studies have shown a lack of mutual tolerance of separated donor and host NK cells obtained from mixed chimeras. Using BALB/c-->B6 fully MHC-mismatched mixed chimeras, we have now investigated this question in vivo. Neither donor nor host NK cells in mixed chimeras showed evidence for activation, as indicated by expression of B220 and Thy-1.2 on NK cells in chimeric mice at levels similar to those in nonchimeric control mice. Lethally irradiated, established mixed BALB/c--> B6 chimeras rejected a low dose of beta(2)-microglobulin-deficient bone marrow cells (BMC) efficiently but did not reject BALB/c or B6 BMCs. In contrast, similarly conditioned B6 mice rejected both BALB/c and beta(2)-microglobulin-deficient BMCs. Thus, NK cells were specifically tolerant to the donor and the host in mixed allogeneic chimeras. The similar growth of RMA lymphoma cells in both chimeric and control B6 mice further supports the conclusion that donor BALB/c NK cells are tolerant to B6 Ags in chimeras. Administration of a high dose of exogenous IL-2 could not break NK cell tolerance in chimeric mice, suggesting that NK cell tolerance in chimeras is not due to a lack of activating cytokine. No reduction in the level of expression of the activating receptor Ly-49D, recognizing a donor MHC molecule, was detected among recipient NK cells in mixed chimeras. Thus, the present studies demonstrate that NK cells in mixed chimeras are stably tolerant to both donor and host Ags, by mechanisms that are as yet unexplained.  相似文献   

4.
Previous work from our laboratory showed that hydrocortisone (HC) combined with IL-15 induces expansion of activated human NK cells. We set up an experimental tumor model to evaluate the use of adoptively transferred, HC plus IL-15 (HC/IL-15)-activated and -expanded murine NK cells in the treatment of syngeneic mice carrying established lung metastases of the CT26 transplantable tumor. We also examined the effect of denileukin diftitox (Ontak) on the depletion of regulatory T cells to enhance the in vivo antitumor immunity induced by the adoptively transferred NK cells. Our results clearly demonstrate that murine DX5(+) NK cells are largely expanded in the presence of IL-15 plus HC while retaining intact their functional status. Moreover, when intravenously infused, they mediated significant antitumor responses against CT26 lung tumors in syngeneic BALB/c animals that were further enhanced upon pretreatment of the tumor-bearing animals with Ontak. Total splenocytes and isolated splenic T cells from NK-treated mice responded in vitro against CT26 tumor cells as evidenced by IFN-γ-based ELISPOT, proliferation, and cytotoxicity assays. Importantly, animals treated with Ontak plus adoptive transfer of HC/IL-15-expanded NK cells significantly retarded CT26 tumor growth after a rechallenge with the same tumor s.c. in their flanks. Taken altogether, our data suggest that NK cell adoptive transfer can trigger adaptive antitumor T cell responses, and regulatory T cell depletion by Ontak is mandatory for enabling HC/IL-15-activated NK cells to promote long-lasting adaptive antitumor immunity.  相似文献   

5.
Establishing mixed chimerism is a promising approach for inducing donor-specific transplant tolerance. The establishment and maintenance of mixed chimerism may enable long-term engraftment of organ transplants while minimizing the use of immunosuppressants. Several protocols for inducing mixed chimerism have been reported; however, the exact mechanism underlying the development of immune tolerance remains to be elucidated. Therefore, understanding the kinetics of engraftment during early post-transplant period may provide insight into establishing long-term mixed chimerism and permanent transplant tolerance. In this study, we intentionally induced allogeneic mixed chimerism using a nonmyeloablative regimen by host natural killer (NK) cell depletion and T cell-depleted bone marrow (BM) grafts in a major histocompatibility complex (MHC)-mismatched murine model and analyzed the kinetics of donor (C57BL/6) and recipient (BALB/c) engraftment in the weeks following transplantation. Donor BM cells were well engrafted and stabilized without graft-versus-host disease (GVHD) as early as one week post-bone marrow transplantation (BMT). Donor-derived thymic T cells were reconstituted four weeks after BMT; however, the emergence of newly developed T cells was more obvious at the periphery as early as two weeks after BMT. Also, the emergence and changes in ratio of recipient- and donor-derived NKT cells and antigen presenting cells (APCs) including dendritic cells (DCs) and B cells were noted after BMT. Here, we report a longitudinal analysis of the development of donor- and recipient-originated hematopoietic cells in various lymphatic tissues of intentionally induced mixed chimerism mouse model during early post-transplant period. Through the understanding of immune reconstitution at early time points after nonmyeloablative BMT, we suggest guidelines on intentionally inducing durable mixed chimerism.  相似文献   

6.
Immune tolerance to organ transplants has been reported in laboratory animals and in humans after nonmyeloablative conditioning of the host and infusion of donor bone marrow cells. We examined the mechanisms of immune tolerance to mouse cardiac allografts in MHC-mismatched hosts that developed mixed chimerism after posttransplant conditioning with a 2-wk course of multiple doses of lymphoid tissue irradiation, depletive anti-T cell Abs, and an infusion of donor bone marrow cells. When CD1(-/-) or J(alpha)281(-/-) hosts with markedly reduced NK T cells were used instead of wild-type hosts, then the conditioning regimen failed to induce tolerance to the heart allografts despite the development of mixed chimerism. Tolerance could be restored to the CD1(-/-) hosts by infusing enriched T cells from the bone marrow of wild-type mice containing CD1-reactive T cells but not from CD1(-/-) host-type mice. Tolerance could not be induced in either IL-4(-/-) or IL-10(-/-) hosts given the regimen despite the development of chimerism and clonal deletion of host T cells to donor MHC-Ags in the IL-10(-/-) hosts. We conclude that immune tolerance to bone marrow transplants involves clonal deletion, and tolerance to heart allografts in this model also involves regulatory CD1-reactive NK T cells.  相似文献   

7.
Transplant rejection is mediated primarily by adaptive immune cells such as T cells and B cells. The T and B cells are also responsible for the specificity and memory of the rejection response. However, destruction of allografts involves many other cell types including cells in the innate immune system. As the innate immune cells do not express germline-encoded cell surface receptors that directly recognize foreign Ags, these cells are thought to be recruited by T cells to participate in the rejection response. In this study, we examined the alloreactivity of the innate NK cells in Rag(-/-) mice using a stringent skin transplant model and found that NK cells at a resting state readily reject allogeneic cells, but not the skin allografts. We also found that IL-15, when preconjugated to its high affinity IL-15Ralpha-chain, is remarkably potent in stimulating NK cells in vivo, and NK cells stimulated by IL-15 express an activated phenotype and are surprisingly potent in mediating acute skin allograft rejection in the absence of any adaptive immune cells. Furthermore, NK cell-mediated graft rejection does not show features of memory responses. Our data demonstrate that NK cells are potent alloreactive cells when fully activated and differentiated under certain conditions. This finding may have important clinical implications in models of transplantation and autoimmunity.  相似文献   

8.
In this study, we investigated whether mesenchymal stem cells (MSC) had immunomodulatory properties in solid organ allotransplantation, using a semiallogeneic heart transplant mouse model, and studied the mechanism(s) underlying MSC tolerogenic effects. Either single (portal vein, day -7) or double (portal vein, day -7 and tail vein, day -1) pretransplant infusions of donor-derived B6C3 MSC in B6 recipients induced a profound T cell hyporesponsiveness and prolonged B6C3 cardiac allograft survival. The protolerogenic effect was abrogated when donor-derived MSC were injected together with B6C3 hematopoietic stem cells (HSC), suggesting that HSC negatively impact MSC immunomodulatory properties. Both the induction (pretransplant) and the maintenance phase (>100 days posttransplant) of donor-derived MSC-induced tolerance were associated with CD4(+)CD25(+)Foxp3(+) Treg expansion and impaired anti-donor Th1 activity. MSC-induced regulatory T cells (Treg) were donor-specific since adoptive transfer of splenocytes from tolerant mice prevented the rejection of fully MHC-mismatched donor-specific secondary allografts but not of third-party grafts. In addition, infusion of recipient-derived B6 MSC tolerized a semiallogeneic B6C3 cardiac allograft, but not a fully MHC-mismatched BALB/c graft, and expanded Treg. A double i.v. pretransplant infusion of recipient-derived MSC had the same tolerogenic effect as the combined intraportal/i.v. MSC infusions, which makes the tolerogenic protocol applicable in a clinical setting. In contrast, single MSC infusions given either peritransplant or 1 day after transplant were less effective. Altogether these findings indicate that MSC immunomodulatory properties require HSC removal, partial sharing of MHC Ags between the donor and the recipient and pretransplant infusion, and are associated with expansion of donor-specific Treg.  相似文献   

9.
Successful grafting of vascularized xenografts (Xgs) depends on the ability to reliably induce both T cell-independent and -dependent immune tolerance. After temporary NK cell depletion, B cell suppression, and pretransplant infusion of donor Ags, athymic rats simultaneously transplanted with hamster heart and thymus Xgs developed immunocompetent rat-derived T cells that tolerated the hamster Xgs but provoked multiple-organ autoimmunity. The autoimmune syndrome was probably due to an insufficient development of tolerance for some rat organs; for example, it led to thyroiditis in the recipient rat thyroid, but not in simultaneously transplanted donor hamster thyroid. Moreover, grafting a mixed hamster/rat thymic epithelial cell graft could prevent the autoimmune syndrome. These experiments indicate that host-type thymic epithelial cells may be essential for the establishment of complete self-tolerance and that mixed host/donor thymus grafts may induce T cell xenotolerance while maintaining self-tolerance in the recipient.  相似文献   

10.
Host NK cells can reject MHC-incompatible (allogeneic) bone marrow cells (BMCs), suggesting their effective role for graft-vs leukemia effects in the clinical setting of bone marrow transplantation. NK cell-mediated rejection of allogeneic BMCs is dependent on donor and recipient MHC alleles and other factors that are not yet fully characterized. Whereas the molecular mechanisms of allogeneic MHC recognition by NK receptors have been well studied in vitro, guidelines to understand NK cell allogeneic reactivity under the control of multiple genetic components in vivo remain less well understood. In this study, we use congenic mice to show that BMC rejection is regulated by haplotypes of the NK gene complex (NKC) that encodes multiple NK cell receptors. Most importantly, host MHC differences modulated the NKC effect. Moreover, the NKC allelic differences also affected the outcome of hybrid resistance whereby F1 hybrid mice reject parental BMCs. Therefore, these data indicate that NK cell alloreactivity in vivo is dependent on the combination of the host NKC and MHC haplotypes. These data suggest that the NK cell self-tolerance process dynamically modulates the NK cell alloreactivity in vivo.  相似文献   

11.
Bone marrow transplantation (BMT) is often used to replace the bone marrow (BM) compartment of recipient mice with BM cells expressing a distinct biomarker isolated from donor mice. This technique allows for identification of donor-derived hematopoietic cells within the recipient mice, and can be used to isolate and characterize donor cells using various biochemical techniques. BMT typically relies on myeloablative conditioning with total body irradiation to generate niche space within the BM compartment of recipient mice for donor cell engraftment. The protocol we describe here uses myelosuppressive conditioning with the chemotherapeutic agent busulfan. Unlike irradiation, which requires the use of specialized facilities, busulfan conditioning is performed using intraperitoneal injections of 20 mg/kg busulfan until a total dose of 60-100 mg/kg has been administered. Moreover, myeloablative irradiation can have toxic side effects and requires successful engraftment of donor cells for survival of recipient mice. In contrast, busulfan conditioning using these doses is generally well tolerated and mice survive without donor cell support. Donor BM cells are isolated from the femurs and tibiae of mice ubiquitously expressing green fluorescent protein (GFP), and injected into the lateral tail vein of conditioned recipient mice. BM chimerism is estimated by quantifying the number of GFP+ cells within the peripheral blood following BMT. Levels of chimerism >80% are typically observed in the peripheral blood 3-4 weeks post-transplant and remain established for at least 1 year. As with irradiation, conditioning with busulfan and BMT allows for the accumulation of donor BM-derived cells within the central nervous system (CNS), particularly in mouse models of neurodegeneration. This busulfan-mediated CNS accumulation may be more physiological than total body irradiation, as the busulfan treatment is less toxic and CNS inflammation appears to be less extensive. We hypothesize that these cells can be genetically engineered to deliver therapeutics to the CNS.  相似文献   

12.
Cell therapy with recipient Tregs achieves engraftment of allogeneic bone marrow (BM) without the need for cytoreductive conditioning (i.e., without irradiation or cytotoxic drugs). Thereby mixed chimerism and transplantation tolerance are established in recipients conditioned solely with costimulation blockade and rapamycin. However, clinical translation would be substantially facilitated if Treg-stimulating pharmaceutical agents could be used instead of individualized cell therapy. Recently, it was shown that interleukin-2 (IL-2) complexed with a monoclonal antibody (mAb) (clone JES6-1A12) against IL-2 (IL-2 complexes) potently expands and activates Tregs in vivo. Therefore, we investigated whether IL-2 complexes can replace Treg therapy in a costimulation blockade-based and irradiation-free BM transplantation (BMT) model. Unexpectedly, the administration of IL-2 complexes at the time of BMT (instead of Tregs) failed to induce BM engraftment in non-irradiated recipients (0/6 with IL-2 complexes vs. 3/4 with Tregs, p<0.05). Adding IL-2 complexes to an otherwise effective regimen involving recipient irradiation (1Gy) but no Treg transfer indeed actively triggered donor BM rejection at higher doses (0/8 with IL-2 complexes vs. 9/11 without, p<0.01) and had no detectable effect at two lower doses (3/5 vs. 9/11, p>0.05). CD8 T cells and NK cells of IL-2 complex-treated naïve mice showed an enhanced proliferative response towards donor antigens in vitro despite the marked expansion of Tregs. However, IL-2 complexes also expanded conventional CD4 T cells, CD8 T cells, NK cells, NKT cells and notably even B cells, albeit to a lesser extent. Notably, IL-2 complex expanded Tregs featured less potent suppressive functions than in vitro activated Tregs in terms of T cell suppression in vitro and BM engraftment in vivo. In conclusion, these data suggest that IL-2 complexes are less effective than recipient Tregs in promoting BM engraftment and in contrast actually trigger BM rejection, as their effect is not sufficiently restricted to Tregs but rather extends to several other lymphocyte populations.  相似文献   

13.
BackgroundNatural killer (NK) cells derived from patients with cancer exhibit diminished cytotoxicity compared with NK cells from healthy individuals. We evaluated the tumor response and in vivo expansion of allogeneic NK cells in recurrent ovarian and breast cancerMethodsPatients underwent a lymphodepleting preparative regimen: fludarabine 25 mg/m2 × 5 doses, cyclophosphamide 60 mg/kg × 2 doses, and, in seven patients, 200 cGy total body irradiation (TBI) to increase host immune suppression. An NK cell product, from a haplo-identical related donor, was incubated overnight in 1000 U/mL interleukin (IL)-2 prior to infusion. Subcutaneous IL-2 (10 MU) was given three times/week × 6 doses after NK cell infusion to promote expansion, defined as detection of ≥100 donor-derived NK cells/μL blood 14 days after infusion, based on molecular chimerism and flow cytometryResultsTwenty (14 ovarian, 6 breast) patients were enrolled. The median age was 52 (range 30–65) years. Mean NK cell dose was 2.16 × 107cells/kg. Donor DNA was detected 7 days after NK cell infusion in 9/13 (69%) patients without TBI and 6/7 (85%) with TBI. T-regulatory cells (Treg) were elevated at day +14 compared with pre-chemotherapy (P = 0.03). Serum IL-15 levels increased after the preparative regimen (P = < 0.001). Patients receiving TBI had delayed hematologic recovery (P = 0.014). One patient who was not evaluable had successful in vivo NK cell expansionConclusionsAdoptive transfer of haplo-identical NK cells after lymphodepleting chemotherapy is associated with transient donor chimerism and may be limited by reconstituting recipient Treg cells. Strategies to augment in vivo NK cell persistence and expansion are needed.  相似文献   

14.
Leptin is an adipocyte-secreted hormone that centrally regulates weight control via targeting the leptin receptor in the central nervous system. Recently, the leptin receptor has also been detected in peripheral systems including immune tissues, suggesting that leptin may play an important role in the regulation of immune function. It has been shown that leptin modulates functions of T lymphocytes, B lymphocytes, and monocytes/macrophage. However, the effect of leptin on NK cells remains unknown. In the present paper, we observed that percentage of NK cells and total amount of NK cells in the liver, spleen, lung, and peripheral blood were declined in leptin receptor deficient mice (db/db B6 mice), indicating that NK cell development was vigorously influenced by leptin receptor deficiency. Both basal and poly I:C-stimulated NK cell activation (CD69 surface marker expression) were retarded in db/db mice. In addition, leptin treatment increased the basal or synergistically enhanced IL-15- and poly I:C-induced specific lysis of splenocytes in normal littermates but not in db/db mice. Taken together, these findings suggest that leptin plays an important role in NK cell development and activation.  相似文献   

15.
Human umbilical cord blood-derived stromal cells (hUCBDSCs), a novel population isolated from CD34(+) cells by our laboratory, exerted an immunosuppressive effect on xenogenic T cells. This study aimed to investigate whether hUCBDSCs play a critical role in the suppression of acute graft-versus-host disease (aGVHD). The hUCBDSCs were co-cultured with splenocytes (SPCs) of donor C57BL/6 mice. The aGVHD in the recipient (B6×BALB/c) F1 mice was induced by the infusion of bone marrow cells and SPCs from donor mice following sublethal irradiation. The shift in vivo for hUCBDSCs was detected. The proliferation and cell cycle of SPCs were tested by cell counting kit-8 and flow cytometry, respectively. The expression of CD49b natural killer (NK) cells and CD3 T cells was detected by flow cytometry in co-culture and post-transplantation. IL-4, and IFN-γ were detected by ELISA in the serum of co-culture and post-transplantation. The survival time, body weight, clinical score, and histopathological score were recorded for mice post-transplantation. The hUCBDSCs promoted the proliferation of SPCs and significantly increased the ratio of the S and G(2)/M phase (p < 0.05). The hUCBDSCs significantly increased the expression of CD49b NK cells and IL-4 protein and decreased the expression of CD3 T cells and IFN-γ protein both in vitro and in vivo. The survival time of mice with co-transplantation of hUCBDSCs was significantly prolonged, and decreased clinical and histopathological scores were also observed. The hUCBDSCs were continually detected in the target organs of GVHD. These results suggest that hUCBDSCs possess the capability of suppressing aGVHD, possibly via their influence on CD3 T cells, NK cells, and cytokines.  相似文献   

16.
IL-12 and IL-15 stimulate T, B, and NK cell functions through independent mechanisms, and cooperative effects of these cytokines have been reported. The human MHC class I-negative small cell lung cancer cell line, N592, genetically engineered to secrete IL-15, N592/IL-15, showed a reduced tumor growth rate, while N592 cells engineered with IL-12, N592/IL-12, grew similarly to the wild-type N592, N592 parental cells (N592pc), in nude mice. However, N592 cells coexpressing both cytokines, N592/IL-12/IL-15 cells, were completely rejected by 100% of nude mice. Here we show that 60% of nude mice rejecting N592/IL-12/IL-15 cells were resistant to N592pc rechallenge. SCID mice rejected N592/IL-12/IL-15 cells, but did not develop resistance to N592pc rechallenge, suggesting a role of Ab responses. Among nude mice rejecting N592/IL-12/IL-15 cells, those developing resistance to N592pc rechallenge had significantly higher titers of anti-N592 IgG2b Abs than nonresistant nude mice. Induction of an Ig class switch in nude mice was related to the expression of IFN-gamma and CD40 ligand in the draining lymph nodes. An IgG2b, anti-N592 mAb, derived from N592/IL-12/IL-15-immunized nude mice splenocytes induced significant protection against N592pc, while an IgM mAb was ineffective. The protective IgG2b mAb, but not the IgM mAb, triggered Ab-dependent cell-mediated cytotoxicity by nude mouse splenocytes against N592pc. These data indicate that IL-12 and IL-15 synergistically trigger innate, immunity-mediated, anti-tumor effects, resulting in cytotoxic IgG Ab responses in T cell-deficient mice. Protective Ab responses may relate to both direct actions of IL-12 and IL-15 on B cells and to the activation of an innate immunity-B cell cross-talk.  相似文献   

17.
Activation of innate immunity through Toll-like receptors (TLR) can abrogate transplantation tolerance by revealing hidden T cell alloreactivity. Separately, the cholinergic anti-inflammatory pathway has the capacity to dampen macrophage activation and cytokine release during endotoxemia and ischemia reperfusion injury. However, the relevance of the α7 nicotinic acetylcholine receptor (α7nAChR)-dependent anti-inflammatory pathway in the process of allograft rejection or maintenance of tolerance remains unknown. The aim of our study is to investigate whether the cholinergic pathway could impact T cell alloreactivity and transplant outcome in mice. For this purpose, we performed minor-mismatched skin allografts using donor/recipient combinations genetically deficient for the α7nAChR. Minor-mismatched skin grafts were not rejected unless the mice were housed in an environment with endogenous pathogen exposure or the graft was treated with direct application of imiquimod (a TLR7 ligand). The α7nAChR-deficient recipient mice showed accelerated rejection compared to wild type recipient mice under these conditions of TLR activation. The accelerated rejection was associated with enhanced IL-17 and IFN-γ production by alloreactive T cells. An α7nAChR-deficiency in the donor tissue facilitated allograft rejection but not in recipient mice. In addition, adoptive T cell transfer experiments in skin-grafted lymphopenic animals revealed a direct regulatory role for the α7nAChR on T cells. Taken together, our data demonstrate that the cholinergic pathway regulates alloreactivity and transplantation tolerance at multiple levels. One implication suggested by our work is that, in an organ transplant setting, deliberate α7nAChR stimulation of brain dead donors might be a valuable approach for preventing donor tissue inflammation prior to transplant.  相似文献   

18.
NK cells possess both effector and regulatory activities that may be important during the antitumor immune response. In fact, the generation of antitumor immunity by the administration of an agonistic mAb against CD137 is NK cell-dependent. In this study, we report that NK cells could be induced by IL-2 and IL-15 to express CD137 and ligation of CD137-stimulated NK cell proliferation and IFN-gamma secretion, but not their cytolytic activity. Importantly, CD137-stimulated NK cells promoted the expansion of activated T cells in vitro, demonstrating immunoregulatory or "helper" activity for CD8(+)CTL. Furthermore, tumor-specific CTL activity against P815 tumor Ags was abrogated following anti-CD137 treatment in NK-depleted mice. We further demonstrate that CD137-stimulated helper NK cells expressed the high-affinity IL-2R and were hyperresponsive to IL-2. Taken together with previous findings that CD137 is a critical receptor for costimulation of T cells, our findings suggest that CD137 is a stimulatory receptor for NK cells involved in the crosstalk between innate and adaptive immunity.  相似文献   

19.
NK cell populations were derived from murine splenocytes stimulated by IL-2, IL-15, or the combination of IL-12 and IL-18. Whereas NK cells derived with the latter cytokines consisted of an homogeneous population of NK cells (DX5+CD3-), those derived with IL-2 or IL-15 belonged to two different populations, namely NK cells (DX5+CD3-) and T-NK cells (DX5+CD3+). Among NK cells, only those derived with IL-12/IL-18 produced detectable levels of cytokines, namely IFN-gamma, IL-10, and IL-13 (with the exception of IL-13 production by NK cells derived with IL-2). As for T-NK cells, IL-2-stimulated cells produced a wide range of cytokines, including IL-4, IL-5, IL-9, IL-10, and IL-13, but no IFN-gamma, whereas IL-15-derived T-NK cells failed to produce any cytokine. Switch-culture experiments indicated that T-NK cells derived in IL-2 and further stimulated with IL-12/IL-18 produced IFN-gamma and higher IL-13 levels. Next, we observed that NK/T-NK cell populations exerted distinct effects on Ig production by autologous splenocytes according to the cytokines with which they were derived. Thus, addition of NK cells derived in IL-12/IL-18 inhibited Ig production and induced strong cytotoxicity against splenocytes, whereas addition of NK or T-NK cells grown in IL-2 or IL-15 did not. Experiments performed in IFN-gammaR knockout mice demonstrated that IFN-gamma was not involved in the killer activity of IL-12/IL-18-derived NK cells. The hypothesis that their cytotoxic activity was related to the induction of target apoptosis was confirmed on murine A20 lymphoma cells. Experiments performed in MRL/lpr mice indicated that IL-12/IL-18-derived NK cells displayed their distinct killer activity through a Fas-independent pathway. Finally, perforin was much more expressed in IL-12/IL-18-derived NK cells as compared with IL-2- or IL-15-derived NK cells, an observation that might explain their unique cytotoxicity.  相似文献   

20.
The mechanisms behind the increased incidence of marrow graft failure in recipients that receive allogeneic marrow depleted of T cells were studied. Recipient mice were lethally irradiated and challenged with bone marrow cells (BMC) from C.B-17 +/+ (+/+) donors. Radioisotope 125IUdR incorporation was assessed 5 to 7 days after transfer to determine the extent of engraftment. Some groups received BMC in which the T cells were removed by treatment with antibody and C. In addition, some groups received BMC from T cell-deficient C.B-17 scid/scid (SCID) mice to determine the postulated need for donor T cells in hematopoiesis and engraftment. In a model system that distinguishes between possible host NK cell and radioresistant T cell-mediated rejection of marrow allografts, it was determined that the absence of donor T cells in a marrow graft does not affect engraftment in syngeneic recipients. However, both host NK cell and radioresistant T cell rejection was markedly enhanced when SCID BMC or BMC from C.B-17 +/+ donors that had T cells removed by antibody and complement were infused into irradiated allogeneic recipients. Furthermore, the addition of alloreactive thymocytes as a source of T cells could abrogate this increased susceptibility of the BMC to host rejection mechanisms. As determined by histology and 59Fe uptake, the addition of thymocytes resulted in enhanced erythropoiesis. These results suggest that the increased incidence of marrow graft failure when BMC depleted of T cells are used is a result of active rejection by host effector cells and that the adverse effect of marrow T cell depletion can be reversed by the addition of thymocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号