首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   0篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   9篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1990年   2篇
  1986年   1篇
  1983年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
1.
2.
The epithelial cells of the gut form a physical barrier against the luminal contents. The collapse of this barrier causes inflammation, and its therapeutic restoration can protect the gut against inflammation. EGF enhances mucosal barrier function and increases colonocyte proliferation, thereby ameliorating inflammatory responses in the gut. Based on our previous finding that the insect peptide CopA3 promotes neuronal growth, we herein tested whether CopA3 could increase the cell proliferation of colonocytes, enhance mucosal barrier function, and ameliorate gut inflammation. Our results revealed that CopA3 significantly increased epithelial cell proliferation in mouse colonic crypts and also enhanced colonic epithelial barrier function. Moreover, CopA3 treatment ameliorated Clostridium difficile toxin As-induced inflammation responses in the mouse small intestine (acute enteritis) and completely blocked inflammatory responses and subsequent lethality in the dextran sulfate sodium-induced mouse model of chronic colitis. The marked CopA3-induced increase of colonocyte proliferation was found to require rapid protein degradation of p21Cip1/Waf1, and an in vitro ubiquitination assay revealed that CopA3 directly facilitated ubiquitin ligase activity against p21Cip1/Waf1. Taken together, our findings indicate that the insect peptide CopA3 prevents gut inflammation by increasing epithelial cell proliferation and mucosal barrier function.  相似文献   
3.
Glutamate (Glu) is the primary excitatory neurotransmitter in the central nervous system and plays a critical role in the neuroplasticity of nociceptive networks. We aimed to examine the role of spinal astroglia in the modulation of glutamatergic neurotransmission in a model of chronic psychological stress-induced visceral hyperalgesia in male Wistar rats. We assessed the effect of chronic stress on different glial Glu control mechanisms in the spinal cord including N-methyl-d-aspartate receptors (NMDARs), glial Glu transporters (GLT1 and GLAST), the Glu conversion enzyme glutamine synthetase (GS), and glial fibrillary acidic protein (GFAP). We also tested the effect of pharmacological inhibition of NMDAR activation, of extracellular Glu reuptake, and of astrocyte function on visceral nociceptive response in naive and stressed rats. We observed stress-induced decreased expression of spinal GLT1, GFAP, and GS, whereas GLAST expression was upregulated. Although visceral hyperalgesia was blocked by pharmacological inhibition of spinal NMDARs, we observed no stress effects on NMDAR subunit expression or phosphorylation. The glial modulating agent propentofylline blocked stress-induced visceral hyperalgesia, and blockade of GLT1 function in control rats resulted in enhanced visceral nociceptive response. These findings provide evidence for stress-induced modulation of glia-controlled spinal Glu-ergic neurotransmission and its involvement in chronic stress-induced visceral hyperalgesia. The findings reported in this study demonstrate a unique pattern of stress-induced changes in spinal Glu signaling and metabolism associated with enhanced responses to visceral distension.  相似文献   
4.
The global prevalence of severe Clostridium difficile infection highlights the profound clinical significance of clostridial glucosylating toxins. Virulence is dependent on the autoactivation of a toxin cysteine protease, which is promoted by the allosteric cofactor inositol hexakisphosphate (InsP(6)). Host mechanisms that protect against such exotoxins are poorly understood. It is increasingly appreciated that the pleiotropic functions attributed to nitric oxide (NO), including host immunity, are in large part mediated by S-nitrosylation of proteins. Here we show that C. difficile toxins are S-nitrosylated by the infected host and that S-nitrosylation attenuates virulence by inhibiting toxin self-cleavage and cell entry. Notably, InsP(6)- and inositol pyrophosphate (InsP(7))-induced conformational changes in the toxin enabled host S-nitrosothiols to transnitrosylate the toxin catalytic cysteine, which forms part of a structurally conserved nitrosylation motif. Moreover, treatment with exogenous InsP(6) enhanced the therapeutic actions of oral S-nitrosothiols in mouse models of C. difficile infection. Allostery in bacterial proteins has thus been successfully exploited in the evolutionary development of nitrosothiol-based innate immunity and may provide an avenue to new therapeutic approaches.  相似文献   
5.
Neurotensin (NT), a neuropeptide highlyexpressed in the gastrointestinal tract, participates in thepathophysiology of intestinal inflammation. We recently showed that NTstimulates interleukin-8 (IL-8) expression in NCM460 nontransformedhuman colonic epithelial cells via both mitogen-activating proteinkinase (MAPK)- and NF-B-dependent pathways. However, the molecularmechanism by which NT induces expression of proinflammatory cytokinessuch as IL-8 has not been investigated. In this study we show thatinhibition of endogenous Rho family proteins (RhoA, Rac1, and Cdc42) bytheir respective dominant negative mutants inhibits NT-induced IL-8protein production and promoter activity. Western blot experimentsdemonstrated that NT strongly activated RhoA, Rac1, and Cdc42.Overexpression of the dominant negative mutants of RhoA, Rac1, andCdc42 significantly inhibited NT-induced NF-B-dependent reportergene expression and NF-B DNA binding activity. NT also stimulatedp38 MAPK phosphorylation, and overexpression of dominant negativemutants of RhoA, Rac1, and Cdc42 did not significantly alter p38 andERK1/2 phosphorylation in response to NT. Together, our findingsindicate that NT-stimulated IL-8 expression is mediated via aRho-dependent NF-B-mediated pathway.

  相似文献   
6.
Expression of the neuropeptide neurotensin (NT) and its high affinity receptor (NTR1) is increased during the course of Clostridium difficile toxin A-induced acute colitis, and NTR1 antagonism attenuates the severity of toxin A-induced inflammation. We recently demonstrated in non-transformed human colonic epithelial NCM460 cells that NT treatment caused activation of a Ras-mediated MAP kinase pathway that significantly contributes to NT-induced interleukin-8 (IL-8) secretion. Here we used NCM460 cells, which normally express low levels of NTR1, and NCM460 cells stably transfected with NTR1 to identify the upstream signaling molecules involved in NT-NTR1-mediated MAP kinase activation. We found that inhibition of the epidermal growth factor receptor (EGFR) by either an EGFR neutralizing antibody or by its specific inhibitor AG1478 (0.2 microm) blocked NT-induced MAP kinase activation. Moreover, NT stimulated tyrosine phosphorylation of the EGFR, and pretreatment with a broad spectrum metalloproteinase inhibitor batimastat reduced NT-induced MAP kinase activation. Using neutralizing antibodies against the EGFR ligands EGF, heparin-binding-EGF, transforming growth factor-alpha (TGFalpha), or amphiregulin we have shown that only the anti-TGFalpha antibody significantly decreases NT-induced phosphorylation of EGFR and MAP kinases. Furthermore, inhibition of the EGF receptor by AG1478 significantly reduced NT-induced IL-8 promoter activity and IL-8 secretion. This is the first report demonstrating that NT binding to NTR1 transactivates the EGFR and that this response is linked to NT-mediated proinflammatory signaling. Our findings indicate that matrix metalloproteinase-mediated release of TGFalpha and subsequent EGFR transactivation triggers a NT-mediated MAP kinase pathway that leads to IL-8 gene expression in human colonic epithelial cells.  相似文献   
7.
Clostridium difficile toxin A induces acute colitis with neutrophil infiltration and up-regulation of numerous pro-inflammatory mediators, but the contribution of cyclooxygenase-2 (COX-2) induction in this infection is unknown. We report here that toxin A induces expression of COX-2 and secretion of prostaglandin E2 (PGE2) in a dose- and time-dependent manner in cultured NCM460 human colonocytes and in human intestinal xenografts. This induction was blocked by SB203580, a p38 MAPK inhibitor, which also decreased the phosphorylation of MSK-1, CREB/ATF-1, and COX-2 promoter activity following toxin A stimulation. Gel shift assays indicated that CREB/ATF-1 was the major proteins binding to the COX-2-CRE. Moreover, colonocytes exposed to toxin A produced reactive oxygen species (ROS), which activated p38 MAPK, MSK-1, and CREB/ATF-1, leading to subsequent COX-2 induction and PGE2 secretion. In intact mice, blockage of p38 MAPK inhibited toxin A-mediated induction of COX-2 in enterocytes as well as lamina propria cells, and significantly blocked the toxin A-induced ileal secretion of fluid and PGE2. Furthermore, a selective COX-2 inhibitor also diminished toxin A-associated ileal fluid and PGE2 secretion. The main signaling pathway for toxin A induction of human COX-2 involves ROS-mediated activation of p38 MAPK, MSK-1, CREB, and ATF-1. Toxin A triggers ileal inflammation and secretion of fluid via COX-2 induction and release of PGE2.  相似文献   
8.
9.
Substance P (SP) via its neurokinin-1 receptor (NK-1R) regulates several gastrointestinal functions. We previously reported that NK-1R-mediated chloride secretion in the colon involves formation of PG. PGE2 biosynthesis is controlled by cyclooxygenase-1 (COX-1) and COX-2, whose induction involves the STATs. In this study, we examined whether SP stimulates PGE2 production and COX-2 expression in human nontransformed NCM460 colonocytes stably transfected with the human NK-1R (NCM460-NK-1R cells) and identified the pathways involved in this response. SP exposure time and dose dependently induced an early (1-min) phosphorylation of JAK2, STAT3, and STAT5, followed by COX-2 expression and PGE2 production by 2 h. Pharmacologic experiments showed that PGE2 production is dependent on newly synthesized COX-2, but COX-1 protein. Inhibition of protein kinase Ctheta (PKCtheta), but not PKCepsilon and PKCdelta, significantly reduced SP-induced COX-2 up-regulation, and JAK2, STAT3, and STAT5 phosphorylation. Pharmacological blockade of JAK inhibited SP-induced JAK2, STAT3, and STAT5 phosphorylation; COX-2 expression; and PGE2 production. Transient transfection with JAK2 short-interferring RNA reduced COX-2 promoter activity and JAK2 phosphorylation, while RNA interference of STAT isoforms showed that STAT5 predominantly mediates SP-induced COX-2 promoter activity. Site-directed mutation of STAT binding sites on the COX-2 promoter completely abolished COX-2 promoter activity. Lastly, COX-2 expression was elevated in colon of mice during experimental colitis, and this effect was normalized by administration of the NK-1R antagonist CJ-12,255. Our results demonstrate that SP stimulates COX-2 expression and PGE2 production in human colonocytes via activation of the JAK2-STAT3/5 pathway.  相似文献   
10.
Frequency of gram-negative bacteria is markedly enhanced in inflamed gut, leading to augmented LPS in the intestine. Although LPS in the intestine is considered harmless and, rather, provides protective effects against epithelial injury, it has been suggested that LPS causes intestinal inflammation, such as necrotizing enterocolitis. Therefore, direct effects of LPS in the intestine remain to be studied. In this study, we examine the effect of LPS in the colon of mice instilled with LPS by rectal enema. We found that augmented LPS on the luminal side of the colon elicited inflammation in the small intestine remotely, not in the colon; this inflammation was characterized by body weight loss, increased fluid secretion, enhanced inflammatory cytokine production, and epithelial damage. In contrast to the inflamed small intestine induced by colonic LPS, the colonic epithelium did not exhibit histological tissue damage or inflammatory lesions, although intracolonic LPS treatment elicited inflammatory cytokine gene expression in the colon tissues. Moreover, we found that intracolonic LPS treatment substantially decreased the frequency of immune-suppressive regulatory T cells (CD4(+)/CD25(+) and CD4(+)/Foxp3(+)). We were intrigued to find that LPS-promoted intestinal inflammation is exacerbated in immune modulator-impaired IL-10(-/-) and Rag-1(-/-) mice. In conclusion, our results provide evidence that elevated LPS in the colon is able to cause intestinal inflammation and, therefore, suggest a physiological explanation for the importance of maintaining the balance between gram-negative and gram-positive bacteria in the intestine to maintain homeostasis in the gut.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号