首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
非亲缘脐带血移植是治疗造血系统疾病的重要移植方式之一,但脐带血移植面临的最大挑战是造血干细胞(HSCs)数量不足,特别是成人患者受到脐带血干细胞数量的限制,导致造血及免疫恢复延迟,非复发死亡率升高。体外扩增脐带血HSCs(UCB-HSCs)是解决该问题的途径之一。研究发现可以通过模拟骨髓造血龛(niche)这一生态位使HSCs在体外进行自我更新增殖,而间充质干细胞(MSCs)正是造血龛的重要的组成细胞之一。本文将探讨MSCs在UCB-HSCs体外扩增中的应用。重点以MSCs促造血的特点、机制,促进脐带血干细胞增殖的各种策略以及其临床应用和前景做一综述。  相似文献   

2.
造血干细胞(HSCs)是血液系统中的一类成体干细胞群,具有自我更新和多谱系分化两个基本特征。造血干细胞移植(HSCT)可以治疗退行性疾病和多种血液系统疾病。脐带血来源造血干细胞(CB HSCs)是降低HLA配型要求的突破点,但单份脐带血中HSCs数量不能满足使用要求,为了获得足够数量的CB HSCs,体外扩增是一种可行的方法。近几年,学者们探索了多种体外扩增方法,包括优化细胞生长因子混合物、与基质细胞共培养及加入小分子化合物(SMCs)激动剂等。目前应用细胞因子联合小分子的扩增方法在多个临床试验中获得成功。本文对目前体外扩增CB HSCs的研究进展做一综述。  相似文献   

3.
脐带血造血干细胞具有极强的自我更新和多向分化潜能,为治疗糖尿病开辟了新的途径,造血干细胞在生成胰岛素分泌细胞前需要经过诱导分化、细胞选择和细胞成熟三个阶段。目前,脐带血造血干细胞在治疗糖尿病中已取得一定进展,将造血干细胞定向分化为胰岛β细胞成为了治疗的关键。本文通过对脐带血的特征、造血干细胞的制备和移植、糖尿病的治疗以及脐带血造血干细胞移植的利与弊等方面进行的归纳总结,分析脐带血造血干细胞在治疗糖尿病方面的进展和应用前景。  相似文献   

4.
脐带血非造血干细胞(UCB-nHSC)种类多样,近年来在越来越多的领域凸显其作用。本文归纳了脐带血中发现的胚胎样干细胞、非限制性体干细胞、多系性祖细胞及多潜能祖细胞、神经祖细胞的非造血干细胞的特性,指出目前研究应用领域及存在的问题,讨论与其他细胞相比在应用方面的优缺点,并在此基础上对UCB-nHSC的研究及应用前景做了展望。  相似文献   

5.
造血干细胞(hematopoietic stem cells, HSCs)是一类多能干细胞,位于特殊的造血微环境,主要存在于骨髓中。其能自我更新和多向分化为各种功能的血细胞,维持血液系统的建立和动态平衡。造血干细胞的这些重要特性以及造血干细胞移植在临床上的广泛应用,结合基因治疗和基因编辑技术的进步,使得基于造血干细胞治疗多种血液疾病和免疫疾病的基因治疗研究在近年来取得了很大的进展。该文将从造血干细胞生物学特征、来源、造血干细胞微环境的基础研究,以及造血干细胞基因治疗、自体造血干细胞移植治疗β-地中海贫血等方面的临床研究和应用进展进行综述。  相似文献   

6.
骨髓移植是目前治疗恶性白血病以及遗传性血液病最有效的方法之一。但是HLA相匹配的骨髓捐献者严重短缺,骨髓造血干细胞(hematopoietic stem cells,HSCs)体外培养困难,在体外修复患者骨髓造血干细胞技术不成熟,这些都大大限制了骨髓移植在临床上的应用。多能性胚胎干细胞(embryonic stem cells,ESCs)具有自我更新能力,在合适的培养条件下分化形成各种血系细胞,是造血干细胞的另一来源。在过去的二十多年里,血发生的研究是干细胞生物学中最为活跃的领域之一。小鼠及人的胚胎干细胞方面的研究最近取得了重大进展。这篇综述总结了近年来从胚胎干细胞获得造血干细胞的成就,以及在安全和技术上的障碍。胚胎干细胞诱导生成可移植性血干细胞的研究能够使我们更好地了解正常和异常造血发生的机制,同时也为造血干细胞的临床应用提供理论和实验依据。  相似文献   

7.
稳态下,骨髓微环境(bone marrow microenvironment)被证实能通过多种信号通路和细胞因子调控造血干细胞(hematopoietic stem cells,HSCs)的自我更新、增殖、分化和迁移能力以维持造血系统的稳定。在衰老过程中,HSCs功能受损会导致造血系统功能的退化以及年龄相关的免疫应答的改变,增加机体对贫血、自身免疫性和骨髓增生性疾病的易感性。HSCs的衰老最初被认为是一种细胞内在调控机制,但近年来,随着对骨髓造血微环境研究的深入,人们发现骨髓微环境不但能在稳态下调控HSCs的功能,而且在HSCs衰老的过程中也发挥着重要作用。该文将对稳态及衰老情况下骨髓微环境对HSCs的调控作用作一综述。  相似文献   

8.
异基因造血干细胞移植(allo-HSCT)是治愈多种非恶性病的有效方法。脐带血干细胞(UCB)具有免疫原性低、人类白细胞抗原不合耐受性好、移植物抗宿主反应发生率低以及获取相对快捷等特点,可作为非恶性血液疾病患者allo-HSCT的来源。本文简要综述脐血干细胞移植在原发性免疫缺陷病、遗传性骨髓衰竭、遗传代谢病以及自身免疫性疾病等非恶性血液疾病的治疗效果。  相似文献   

9.
无关供者脐带血干细胞移植概况   总被引:1,自引:0,他引:1  
脐带血作为造血干细胞的一大来源,已逐渐获得医学界的认可,随着临床实践的不断展开,对脐带血的使用也趋于标准化。我们通过移植物抗宿主病和治愈情况对骨髓移植与脐带血移植进行了比较,提供了移植用脐带血的择优选取办法及移植的最低细胞剂量,对双份脐带血的选择给出建议,同时对非亲缘脐血与骨髓共输注临床使用情况和嵌合体检测做了介绍与评价。可以看出,在治疗恶性血液病时,脐带血移植是一个可靠的方法。  相似文献   

10.
脐带血移植的应用进展及脐带血库建设   总被引:5,自引:0,他引:5  
脐带血(umbilical cord blood)作为公认的造血干细胞重要来源之一,已经被广泛地用于治疗儿童和成人的良恶性血液系统疾病以及中枢神经系统疾病、实体瘤、缺血性下肢血管病和组织再生等。相对于骨髓移植和外周血来源的造血干细胞移植,脐带血移植(UCBT)在细胞收集使用、干细胞增殖能力以及移植物抗宿主反应等方面都具有明显的优势。目前的数据显示,因为HLA配型等原因而无法进行骨髓移植的患者应该尽早进行UCBT。此外,UCBT的增多促进了脐带血库的快速建设。本文针对UCBT和脐带血库的最新进展进行了综述。  相似文献   

11.
Umbilical cord blood (UCB) transplantation has emerged as a promising therapy, but it is challenged by scarcity of stem cells. Eltrombopag is a non-peptide, thrombopoietin (TPO) receptor agonist, which selectively activates c-Mpl in humans and chimpanzees. We investigated eltrombopag's effects on human UCB hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) expansion, and its effects on hematopoiesis in vivo. Eltrombopag selectively augmented the expansion of human CD45+, CD34+, and CD41+ cells in bone marrow compartment without effects on mouse bone marrow cells in the NOD/SCID mice xenotransplant model. Consequently, eltrombopag increased peripheral human platelets and white blood cells. We further examined effects in the STAT and AKT signaling pathways in serum-free cultures. Eltrombopag expanded human CD34+ CD38-, CD34+, and CD41+ cells. Both eltrombopag and recombinant human TPO (rhTPO) induced phosphorylation of STAT5 of CD34+ CD41-, CD34- CD41+, and CD34- CD41- cells. rhTPO preferentially induced pSTAT3, pAKT, and more pSTAT5 in CD34- C41+ cells, while eltrombopag had no effects on pSTAT3. In conclusion, eltrombopag enhanced expansion of HSCs/HPCs of human UCB in vivo and in vitro, and promoted multi-lineage hematopoiesis through the expansion of bone marrow HSCs/HPCs of human UCB in vivo. Eltrombopag differed somewhat from rhTPO in the signal transduction pathways by favoring earlier HSC/HPC populations.  相似文献   

12.
It is known that umbilical cord blood (UCB) is a rich source of stem cells with practical and ethical advantages. Three important types of stem cells which can be harvested from umbilical cord blood and used in disease treatment are hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). Since these stem cells have shown enormous potential in regenerative medicine, numerous umbilical cord blood banks have been established. In this study, we examined the ability of banked UCB collected to produce three types of stem cells from the same samples with characteristics of HSCs, MSCs and EPCs. We were able to obtain homogeneous plastic rapidly-adherent cells (with characteristics of MSCs), slowly-adherent (with characteristics of EPCs) and non-adherent cells (with characteristics of HSCs) from the mononuclear cell fractions of cryopreserved UCB. Using a protocol of 48?h supernatant transferring, we successfully isolated MSCs which expressed CD13, CD44 and CD90 while CD34, CD45 and CD133 negative, had typical fibroblast-like shape, and was able to differentiate into adipocytes; EPCs which were CD34, and CD90 positive, CD13, CD44, CD45 and CD133 negative, adherent with cobble-like shape; HSCs which formed colonies when cultured in MethoCult medium.  相似文献   

13.
Full-term cord blood (TCB) hematopoietic stem/progenitor cells (HSC/HPCs) are used for stem cell transplantation and are well characterized. However, the properties of preterm cord blood (PCB) HSC/HPCs remain unclear. In the present study, we compared HSC/HPCs from TCB and PCB with respect to their expression of surface markers, homing capacity and ability to repopulate HSCs in the NOD/Shi-scid mice bone marrow. The proportion of CD34+CD38− cells was significantly higher in PCB. On the other hand, the engraftment rate of TCB CD34+ cells into NOD/Shi-scid mice was significantly higher than PCB CD34+ cells. The expression of VLA4 was stronger among TCB CD34+ cells than PCB CD34+ cells. Moreover, there was a positive correlation between the proportion of CD34+CXCR4+ cells and gestational age. These data suggest that the homing ability of HSCs increases during gestation, so that TCB may be a better source of HSCs for transplantation than PCB.  相似文献   

14.
The first umbilical cord blood (UCB) transplant to a sibling with Fanconi's anaemia in 1988 represented a breakthrough in the field of transplantation. Thereon, several transplants have been performed with UCB-derived hematopoietic stem cells (HSCs) and a plethora of studies have investigated the plasticity of UCB-derived stem and progenitor cells. However, these studies have not been hitherto translated into clinical trials and, although UCB is routinely used as an alternative source of HSCs, no substantial advances have been made in the field of clinical regenerative medicine. The real deal is the lack of knowledge about the molecular processes governing the events of differentiation which transform immature UCB stem cells into terminally-committed hematopoietic, muscle, bone and nervous cells. In order to fill this void, several studies have been recently focused on the identification of the peculiar proteomic profile of UCB-derived stem cells.Hereby, we concisely review recent proteomic surveys addressing UCB-derived stem and progenitor cells.Notably, comparative studies detected a wider spectrum of proteins in immature cells rather than in more differentiated populations, as if maturation events could represent a bottleneck to protein expression. Future research projects should try to shed light on these processes and their completion could pave the way for unprecedented treatments.  相似文献   

15.
Hematopoietic stem cells (HSCs) are widely used in transplantation therapy to treat a variety of blood diseases. The success of hematopoietic recovery is of high importance and closely related to the patient’s morbidity and mortality after Hematopoietic stem cell transplantation (HSCT). We have previously shown that SALL4 is a potent stimulator for the expansion of human hematopoietic stem/progenitor cells in vitro. In these studies, we demonstrated that systemic administration with TAT-SALL4B resulted in expediting auto-reconstitution and inducing a 30-fold expansion of endogenous HSCs/HPCs in mice exposed to a high dose of irradiation. Most importantly, TAT-SALL4B treatment markedly prevented death in mice receiving lethal irradiation. Our studies also showed that TAT-SALL4B treatment was able to enhance both the short-term and long-term engraftment of human cord blood (CB) cells in NOD/SCID mice and the mechanism was likely related to the in vivo expansion of donor cells in a recipient. This robust expansion was required for the association of SALL4B with DNA methyltransferase complex, an epigenetic regulator critical in maintaining HSC pools and in normal lineage progression. Our results may provide a useful strategy to enhance hematopoietic recovery and reconstitution in cord blood transplantation with a recombinant TAT-SALL4B fusion protein.  相似文献   

16.
Hepatocyte growth factor (HGF), which was originally isolated as a liver generating factor, enhances hematopoiesis. To study the effect of HGF on hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs), we generated severe combined immunodeficiency (SCID) mice producing human (h) HGF and/or stem cell factor (SCF) by transferring the relevant genes to fertilized eggs, and then transplanted hematopoietic progenitors from human cord blood into the transgenic (Tg) SCID mice. Six months after transplantation, a significantly larger number of human cells were found in the Tg SCID mice than in non-Tg controls. Characteristically, the recipient SCID mice producing h HGF (HGF-SCID) had a significantly increased number of h CD41+ cells, whereas the SCF-SCID recipients had more CD11b+ cells. Significantly large numbers of CD34+ progenitors were found in the SCID mice transferred with both h HGF and h SCF genes (HGF/SCF-SCID) when compared with HGF-SCID or SCF-SCID mice. These results imply that HGF supports the differentiation of progenitors in megakaryocyte lineage, whereas SCF supports that in myeloid lineage. The results also imply that HGF acts on HSCs/HPCs as a synergistic proliferative factor combined with SCF. We have demonstrated the advantage of the human cytokine-producing animal in the maintenance of human HSCs.  相似文献   

17.
Cord blood (CB) transplantation has been used over the last 24 years to treat patients with malignant and nonmalignant disorders. CB has its advantages and disadvantages compared with other sources of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) for transplantation. More knowledge of the cytokines and intracellular signaling molecules regulating HSCs and HPCs could be used to modulate these regulators for clinical benefit. This review provides information about the general field of CB transplantation and about studies from the author's laboratory that focus on regulation of HSCs and HPCs by CD26/DPPIV, SDF-1/CXCL12, the Rheb2-mTOR pathway, SIRT1, DEK, cyclin-dependent kinase inhibitors, and cytokines/growth factors. Cryopreservation of CB HSCs and HPCs is also briefly discussed.  相似文献   

18.
Umbilical cord blood (UCB) is an alternative source of allogeneic hematopoietic stem cells (HSCs) for transplantation to treat various hematological disorders. The major limitation to the use of UCB-derived HSCs (UCB–HSCs) in transplantation, however, is the low numbers of HSCs in a unit of cord blood. To overcome this limitation, various cytokines or small molecules have been used to expand UCB-HSCs ex vivo. In this study, we investigated a synergistic effect of the combination of HIL-6, SR1, and UM171 on UCB-HSC culture and found that this combination resulted in the highest number of CD34+ cells. These results suggest that the combination of SR1, UM171 and HIL-6 exerts a synergistic effect in the proliferation of HSCs from UCB and thus, SR1, UM171 and HIL-6 is the most suitable combination for obtaining HSCs from UCB for clinical transplantation.  相似文献   

19.
This study aimed to investigate the significance of cytokine expression in supernatant from hematopoietic stem/progenitor cells (HSCs/HPCs) co-cultured with mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs). Mononuclear cells (MNCs) were isolated from normal human umbilical cord blood and then cultured solely or co-cultured with MSCs or EPCs. Changes in the number of MNCs and HSCs/HPCs were observed, and MNC proliferation was tested by carboxyfluorescein diacetate succinimidyl ester. The cultured supernatants of the treated MSCs and EPCs were collected at 24 h after co-culture and used to determine the concentrations of IL-3, IL-6, stem cell factor (SCF), TPO, Flt3l, and VEGF. The total number and proliferation of MNCs increased significantly when co-cultured with MSCs or EPCs than when cultured alone, particularly when MNCs were co-cultured with EPCs. The differences in IL-3 and Flt3l concentrations between groups were not significant. However, IL-6 in the MSC group was significantly higher than that in the two other groups. The SCF and TPO concentrations were highly expressed in the EPC group. The VEGF concentrations in the MSC group and the EPC group were higher than those in the control group. These results indicated that MSCs and EPCs possibly favor the proliferation of MNCs and HSCs/HPCs. IL-6 and VEGF may be related to hematopoietic reconstitution and homing ability of HSCs/HPCs. TPO may have a specific relationship with the promotion of HSCs/HPCs differentiation.  相似文献   

20.
The canonical Wnt/β-catenin signaling is activated during development, tumorigenesis, and in adult homeostasis, yet its role in maintenance of hematopoietic stem/progenitor cells is not firmly established. Here, we demonstrate that conditional expression of an active form of β-catenin in vivo induces a marked increase in the frequency of apoptosis in hematopoietic stem/progenitor cells (HSCs/HPCs). Activation of Wnt/β-catenin signaling in HPCs in vitro elevates the activity of caspases 3 and 9 and leads to a loss of mitochondrial membrane potential (ΔΨ(m)), indicating that it induces the intrinsic mitochondrial apoptotic pathway. In vivo, expression of activated β-catenin in HPCs is associated with down-regulation of Bcl2 and expression of Casp3. Bone marrow transplantation assays reveal that enhanced cell survival by a Bcl2 transgene re-establishes the reconstitution capacity of HSCs/HPCs that express activated β-catenin. In addition, a Bcl2 transgene prevents exhaustion of these HSCs/HPCs in vivo. Our data suggest that activation of the Wnt/β-catenin pathway contributes to the defective function of HPCs in part by deregulating their survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号