首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
溶氧对L-苏氨酸发酵的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
探索溶氧对L-苏氨酸发酵过程的影响及其控制方法。通过摇瓶装液量试验、不同溶氧控制方式考察发酵过程中溶氧对L-苏氨酸合成的影响。采用补料分批发酵工艺发酵L-苏氨酸,利用氨基酸分析仪测定发酵液中L-苏氨酸的产量,通过10L罐补料分批发酵36h,产酸可达118.9g/L,糖酸转化率为47.6%。可以得出溶氧对L-苏氨酸生物合成有重要影响,并建立了最佳溶氧控制条件。  相似文献   

2.
氮源对L-苏氨酸发酵的影响   总被引:3,自引:0,他引:3  
以L-苏氨酸生产菌TRFC为供试菌株,研究了氮源对L-苏氨酸发酵的产量和糖酸转化率的影响。首先通过摇瓶实验确定发酵的最佳无机氮源和有机氮源分别为硫酸铵和酵母粉,进一步利用10L罐补料分批发酵确定硫酸铵和酵母粉的最佳用量,继续优化培养条件,采用发酵中后期流加硫酸铵和糖氨混合补料等措施,L-苏氨酸产量得到进一步的提高。在最优发酵条件下,通过10L罐补料分批发酵36h,产酸可达118.9g/L,糖酸转化率为47.6%。  相似文献   

3.
对玉米芯稀硫酸水解条件及糖化液发酵L-乳酸进行了初步研究。结果表明,玉米芯木聚糖最适水解条件为2%H2SO_4、120℃、30 min、固液比1:10,糖化液还原糖含量可达40.8 g/L,主要成分为木塘。细菌A-19可以利用水解液中的葡萄糖和木糖产酸,最适发酵条件为45℃、pH 6.5,从45℃~51℃、pH 5.5~pH 6.5产量均较高。用未浓缩的水解液发酵24 h,L-乳酸产量为30.6g/L,残糖为1.6 g/L,糖酸转化率为82.6%;用浓缩1倍的水解液发酵48 h,L-乳酸产量为41.4 g/L,残糖4.1g/L,糖酸转化率为68.2%,在发酵48 h后继续补料发酵至72 h(补料液为浓缩3倍的水解液),L-乳酸产量为50.9 g/L,残糖6.3 g/L,糖酸转化率为71.8%。该研究为利用木质纤维素生产L-乳酸奠定了一定基础。  相似文献   

4.
为增加谷氨酸棒杆菌A36的L-丝氨酸合成途径的碳流,首先过表达磷酸甘油酸激酶(pgk),以增加前体物质3-磷酸甘油酸的积累,但经发酵分析发现其对菌株A36的L-丝氨酸产量无显著影响。进一步敲除副产物L-缬氨酸合成途径的乙酰羟酸合酶(AHAS)基因ilvN,敲除该基因后L-缬氨酸只有微量积累,但重组菌并未形成营养缺陷型菌株,L-丝氨酸的产量反而下降,分析发现L-缬氨酸的存在在一定程度上有助于L-丝氨酸的生成。在培养基中分别添加不同质量浓度的L-缬氨酸,在L-缬氨酸添加量为750 mg/L时,重组菌L-丝氨酸产量达到34.19 g/L,糖酸转化率为0.34 g/g,生产强度为0.28 g/(L·h),相比出发菌株A36分别提高了11.8%、13.3%和12.0%。  相似文献   

5.
【背景】出芽短梗霉可发酵葡萄糖生成聚苹果酸,但存在转化率和转化效率低等瓶颈,阻碍其实现商业化生产。【目的】通过优化发酵培养条件,提高出芽短梗霉的聚苹果酸产量、糖酸转化率和生产强度。【方法】采用单因素试验优化适宜出芽短梗霉BK-10菌株产生聚苹果酸的培养条件,通过Plackett-Burman法对培养基组分筛选显著性影响因素,并对其培养基中无机盐进行正交试验优化,最后进行5 L发酵罐验证。【结果】最优培养基配方和培养条件:100 g/L葡萄糖,1.5 g/L尿素,0.20 g/L KH_2PO_4,0.20 g/L ZnSO_4,0.05 g/L MgSO_4,0.75 g/L KCl,30 g/L CaCO_3,0.01%吐温-80,发酵温度26°C,250 mL摇瓶装液量50 mL。【结论】通过优化,聚苹果酸的糖酸转化率达到0.71 g/g,生产强度达到0.89 g/(L·h),较优化前分别提高了18.33%和71.15%,为发酵葡萄糖合成聚苹果酸进而生产L-苹果酸工艺的工业化生产奠定经济性基础。  相似文献   

6.
溶氧对L-缬氨酸发酵过程的影响   总被引:1,自引:0,他引:1  
目的:以黄色短杆菌XV0505为供试菌,探索溶氧对L-缬氨酸发酵过程的影响及其控制策略。方法:利用5L发酵罐,考察了不同溶氧浓度对L-缬氨酸发酵的影响,并采用代谢流分析对其结果进行阐述,提出分阶段溶氧控制策略。结果:采用分阶段溶氧控制策略,即在0~24h溶氧浓度为20%,24~60h溶氧浓度为5%,发酵60h,L-缬氨酸可达到58.36g/L,比5%和20%溶氧浓度下分别提高了18.95%和13.56%。结论:溶氧浓度对L-缬氨酸发酵有重要影响。  相似文献   

7.
谷氨酸棒状杆菌是目前微生物发酵生产L-缬氨酸的主要工业菌株。文中首先在谷氨酸棒状杆菌VWB-1中敲除了alaT (丙氨酸氨基转移酶),获得突变菌株VWB-2,作为出发菌株。进而对L-缬氨酸合成途径关键酶——乙酰羟酸合酶 (ilvBN) 的调节亚基进行定点突变 (ilvBN1M13),解除L-缬氨酸对该酶的反馈抑制。然后辅助过量表达L-缬氨酸合成途径关键基因ilvBN1M13、乙酰羟酸异构酶 (ilvC)、二羟酸脱水酶 (ilvD)、支链氨基酸氨基转移酶 (ilvE),加强通往L-缬氨酸的碳代谢流,提高菌株的L-缬氨酸水平。最后,基于过量表达L-缬氨酸转运蛋白编码基因brnFE及其调控蛋白编码基因lrp1,提高细胞的L-缬氨酸转运能力。最终获得工程菌株VWB-2/pEC-XK99E-ilvBN1M13CE-lrp1-brnFE在5 L发酵罐中的L-缬氨酸产量达到461.4 mmol/L,糖酸转化率达到0.312 g/g葡萄糖。  相似文献   

8.
无载体固定化米根霉重复间歇发酵生产L-乳酸   总被引:1,自引:1,他引:0  
通过研究影响米根霉菌丝体形态的培养基因素,初步构建了无载体固定化米根霉重复间歇发酵生产L-乳酸的工艺条件.研究结果表明,首批次发酵培养基采用120 g/L葡萄糖,3 g/L硝酸铵,K 和Na 浓度比为1:1,发酵72 h后,米根霉菌体形态为均匀的茵丝体小球,直径为1.0 mm~2.0 mm,此时L-乳酸产量可达100.8 g/L,葡萄糖转化率为84%.在此基础上,利用米根霉菌丝体小球重复间歇发酵16批次,每批次发酵24h,此时葡萄糖转化率均高于75%,L-乳酸产量保持在60.0 g/L以上,米根霉菌丝体小球形态保持稳定.  相似文献   

9.
研究了糖浓度对L -缬氨酸产生菌 (Brevibacteriumflavum)Apv- 2菌积累L -缬氨酸的影响 ,通过三十吨发酵罐发酵工艺条件的试验 ,在合适的外界条件下 ,确定了该菌种发酵L -缬氨酸的最佳初糖浓度和补糖浓度 ,在初糖质量浓度为 3.5 %~ 4 .5 %时 ,发酵至 16h开始连续流加葡萄糖 ,维持发酵培养基中残糖质量浓度为 1.2 %~ 1.5 % ,经过 4 8h左右发酵 ,L -缬氨酸发酵产酸率 3.3%~ 3.5 %。  相似文献   

10.
L-缬氨酸发酵生产的育种思路及发酵条件优化策略   总被引:5,自引:0,他引:5  
L-缬氨酸在医药及饲料领域中有着广泛的用途,根据L缬氨酸的生物合成途径及其代谢调节机制,利用代谢调控理论,重点阐述了L缬氨酸生产菌的育种思路及培养条件的优化,为缬氨酸发酵生产提供理论指导。  相似文献   

11.
L-valine is an essential amino acid and an important amino acid in the food and feed industry. The relatively low titer and low fermentation yield currently limit the large-scale application of L-valine. Here, we constructed a chromosomally engineered Escherichia coli to efficiently produce L-valine. First, the synthetic pathway of L-valine was enhanced by heterologous introduction of a feedback-resistant acetolactate acid synthase from Bacillus subtilis and overexpression of other two enzymes in the L-valine synthetic pathway. For efficient efflux of L-valine, an exporter from Corynebacterium glutamicum was subsequently introduced. Next, the precursor pyruvate pool was increased by knockout of GTP pyrophosphokinase and introduction of a ppGpp 3′-pyrophosphohydrolase mutant to facilitate the glucose uptake process. Finally, in order to improve the redox cofactor balance, acetohydroxy acid isomeroreductase was replaced by a NADH-preferring mutant, and branched-chain amino acid aminotransferase was replaced by leucine dehydrogenase from Bacillus subtilis. Redox cofactor balance enabled the strain to synthesize L-valine under oxygen-limiting condition, significantly increasing the yield in the presence of glucose. Two-stage fed-batch fermentation of the final strain in a 5 L bioreactor produced 84 g/L L-valine with a yield and productivity of 0.41 g/g glucose and 2.33 g/L/h, respectively. To the best of our knowledge, this is the highest L-valine titer and yield ever reported in E. coli. The systems metabolic engineering strategy described here will be useful for future engineering of E. coli strains for the industrial production of L-valine and related products.  相似文献   

12.
Production of L-valine under oxygen deprivation conditions by Corynebacterium glutamicum lacking the lactate dehydrogenase gene ldhA and overexpressing the L-valine biosynthesis genes ilvBNCDE was repressed. This was attributed to imbalanced cofactor production and consumption in the overall L-valine synthesis pathway: two moles of NADH was generated and two moles of NADPH was consumed per mole of L-valine produced from one mole of glucose. In order to solve this cofactor imbalance, the coenzyme requirement for L-valine synthesis was converted from NADPH to NADH via modification of acetohydroxy acid isomeroreductase encoded by ilvC and introduction of Lysinibacillus sphaericus leucine dehydrogenase in place of endogenous transaminase B, encoded by ilvE. The intracellular NADH/NAD(+) ratio significantly decreased, and glucose consumption and L-valine production drastically improved. Moreover, L-valine yield increased and succinate formation decreased concomitantly with the decreased intracellular redox state. These observations suggest that the intracellular NADH/NAD(+) ratio, i.e., reoxidation of NADH, is the primary rate-limiting factor for L-valine production under oxygen deprivation conditions. The L-valine productivity and yield were even better and by-products derived from pyruvate further decreased as a result of a feedback resistance-inducing mutation in the acetohydroxy acid synthase encoded by ilvBN. The resultant strain produced 1,470 mM L-valine after 24 h with a yield of 0.63 mol mol of glucose(-1), and the L-valine productivity reached 1,940 mM after 48 h.  相似文献   

13.
【背景】耐受乙酸的乳酸菌是传统谷物醋醋酸发酵过程中产生乳酸及其风味衍生物的重要功能微生物。【目的】从镇江香醋醋醅中分离鉴定具有耐乙酸特性的乳酸菌,并评价不同条件下该菌株的产乳酸能力。【方法】利用4%(体积比)乙酸含量的MRS培养基分离耐乙酸乳酸菌;对其进行16S rRNA基因鉴定、基因组测序、形态观察以及生理生化特性研究;考察不同乙酸浓度、葡萄糖浓度、发酵温度和时间对菌株产乳酸能力的影响。【结果】分离得到一株可耐受6%乙酸的乳杆菌Lactobacillus sp. JN500903;在厌氧静置、接种量5%、乙酸浓度5%、葡萄糖浓度40 g/L、发酵温度37°C、发酵时间10 d条件下,该菌株乳酸产量为16.1 g/L。【结论】乳杆菌JN500903能够耐受6%乙酸浓度,具有在酸性环境下合成乳酸的能力,有一定的应用潜力。  相似文献   

14.
【目的】通过常压室温等离子体诱变技术选育L-精氨酸高产菌株,利用响应面设计探索突变菌株生产L-精氨酸的最佳发酵条件。【方法】采用常压室温等离子体生物诱变系统对实验室保藏的Corynebacterium glutamicum GUI089进行系列诱变,选育L-高精氨酸和8-氮鸟嘌呤抗性菌株。在单因子实验的基础上,应用Plackett-Burman设计从7个因素中筛选出对L-精氨酸合成具有显著效应的(NH4)2SO4、葡萄糖和尿素3个因素。基于上述结果,进一步采用响应面设计优化出主要影响因素的最佳参数水平。【结果】经过一系列的诱变和筛选,选育出一株L-高精氨酸(15 g/L)和8-氮鸟嘌呤(0.7 g/L)抗性菌株,并将此菌株命名为C.glutamicum ARG 3-16。此菌株的L-精氨酸产量比出发菌株提高了49.79%,且发酵液中杂酸的浓度明显降低,特别是L-脯氨酸、L-谷氨酸和L-缬氨酸。在经响应面优化后的最佳发酵条件下,L-精氨酸的产量达到39.72±0.75 g/L,比优化前提高了10.49%。【结论】通过常压室温等离子体诱变技术成功选育出一株L-精氨酸高产菌株,利用响应面法有效地优化了发酵条件,实验结果表明突变株ARG 3-16具有潜在的生产应用价值。  相似文献   

15.
米根霉发酵生产L-乳酸   总被引:11,自引:0,他引:11  
报道了L-乳酸菌株的分离与筛选,探讨了不同碳源、氮源、通气量、温度等发酵条件对产L-乳酸的影响,从78株米根霉中筛选出13株产L-乳酸较高的菌株,其中米根霉(Rhizopus oryzae)Rs928产L-乳酸最高,产酸最稳定。试验结果表明,该菌株最适发酵培养组成(%):淀粉水解糖16,MgSO4 0.08,KH2PO4 0.05,ZnSO4 0.01,CaCO3 7,pH自然。在60t发酵罐中,  相似文献   

16.
刘畅  李旭  马放 《微生物学通报》2015,42(5):858-865
【目的】对菌株L1和XH1的混合发酵条件进行优化,为混合菌发酵生物破乳剂的实际生产和应用提供理论依据。【方法】利用响应面实验(RSM)的中心组合旋转设计方法(CCRD)针对混合菌的发酵条件进行优化,通过对模型乳状液进行破乳实验,以排油率作为发酵液破乳效能的评价标准。【结果】经模型的分析与验证,确定最佳发酵条件为:种子液比例(L1:XH1)为3:2,葡萄糖投加时间为第4天,投加葡萄糖后再培养21 h,液体石蜡含量3.6% (体积比)。【结论】与破乳菌XH1和L1单独培养相比,经混合培养后获得复合生物破乳剂具有投加量少、破乳接触时间短的优势。同时双株破乳菌复配培养有效地提高了培养基中主要营养物质的利用率,减少了对底物的浪费。  相似文献   

17.
研究了优化重组大肠杆菌产5-氨基乙酰丙酸(ALA)的条件,提高大肠杆菌发酵生产AL气的产量。在测定重组大肠杆菌GT48的生长曲线的基础上,确定诱导时间,优化摇瓶发酵条件。然后,进一步在5L发酵罐上进行间歇和流加发酵研究。摇瓶实验表明,细胞培养最佳初始pH为6.5,最佳诱导时间为稳定期前期,最佳接种量为2%,过高的葡萄糖浓度对细胞生长和产物合成均有一定的抑制作用。在5L发酵罐间歇发酵中,重组菌产ALA能力达到47.8mg/L。采用流加发酵可以进一步将产物产量提高到63.8mg/L。构建的过量表达自身的hemA基因的大肠杆菌具有较高的产ALA能力,通过发酵条件优化和采用流加发酵可以提高AL气产量。  相似文献   

18.
本文对粘质沙雷氏菌发酵生产D-乳酸进行了研究。以粘质沙雷氏菌G1(Serratia marcescens G1)为出发菌种,摇瓶试验确定了发酵培养方式:前12 h为菌体生长阶段,有氧培养,温度28℃,pH值7.0;后36 h为D-乳酸合成积累阶段,无氧培养,温度44℃,pH值6.0。且发现使用葡萄糖为碳源时更有利于D-乳酸的合成积累。采用缺失2,3-丁二醇合成能力的基因工程菌株R1为出发株,经筛选后得到耐受较高浓度乳酸盐的菌株R150,以R150为发酵菌种,在3.7 L发酵罐上采用两阶段发酵法,并通过增加起始菌体浓度的方法,发酵生成的D-乳酸浓度达到83.5 g/L,光学纯度达到98.9%。本研究成果为使用粘质沙雷氏菌发酵生产D-乳酸的深入研究打下了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号