首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
补增UV -B辐射的香蕉叶片光下呼吸速率 (Rd)和不包括光下呼吸的CO2 补偿点 (г ) ,分别为0 .33μmol·m- 2 ·s- 1 和 46.5μl·L- 1 ,较对照植株分别高 5.6%和 1 0 .0 %。在较高CO2 浓度 (>340 μl·L- 1 )条件下的An/θp关系最初直线部分斜率 ,即表观量子产率 (αA)为 0 .0 2 3± 0 .0 0 7,而补增UV B辐射处理的植株则降低 1 3.0 % ,光能转换效率 (δ)亦降低 2 8.6% ,表明UV B辐射明显降低αA 和δ。在高θp(1 1 0 0 μmol·m- 2 ·s- 1 )和Ci<2 0 0 μl·L- 1 条件下 ,对照植株的An/Ci关系为An =0 .0 2 8Ci 1 .44,补增UV B辐射处理的植株则为An =0 .0 2 1Ci 1 .0 1 ,UV B辐射降低羧化限制速率。最大羧化速率 (Vcmax)和电子传导速率的光饱和值 (Jmax)亦较低 ,补增UV B辐射的叶片 ,叶氮在Rubisco的分配系数 (PR)和叶氮在生物力能学组分的分配系数 (PB)分别较对照低 8.1 %和 3.0 % ,叶氮分配到类囊体膜捕光色素蛋白组分的则略见增高 ,UV B辐射降低叶氮在光合循环组分的分配  相似文献   

2.
柚树(Citrus grandis)叶片光合作用对补增UV-B辐射的响应   总被引:4,自引:0,他引:4  
生长在人工光照 4 0 0μmol m- 2 s- 1 下的柚树幼树光合速率的最大值为 1 0 .2± 0 .5μmol m- 2 s- 1 ;而补增UV-B辐射 ( 3.8-4 .2μW cm- 2 ,2 4 5~ 2 97nm,4 5d)的叶片则为 6.4± 0 .8μmol m- 2 s- 1 ,较对照植株降低37.2 %。对照植物的表观量子产率 (固定 mol CO2 mol- 1量子 )为 0 .0 75± 0 .0 1 2 ,而经 UV-B辐射处理植株则为0 .0 4 1± 0 .0 0 8,明显较对照植株低。UV-B辐射处理使植株叶片的光呼吸和不包括光呼吸的 CO2 补偿点增高。对照植株叶片的最大值的 CO2 羧化速率 (μmol m- 2 s- 1 )为 57.1± 1 .5μmol m- 2 s- 1 ,较 UV-B辐射处理的高30 .9% ,而 UV-B辐射处理的植株的光合电子传递速率较对照低 30 %。同时 UV-B辐射植株叶片有较低的光能转化效率 ,其较对照低 39.1 % ,叶片亦含有较低的叶绿素含量。结果表明 ,UV-B辐射明显抑制叶片光合羧化速率和光合电子传递速率 ,UV-B辐射可能抑制包括 Rubisco羧化作用在内的多个光合生理过程 ,降低叶片光合速率。柚树叶片对 UV-B辐射敏感 ,选育抗 UV-B辐射的柚树品种势在必行。  相似文献   

3.
生长在空气 NH3增高下 45 d的 NOˉ3- N大叶相思植株 ,其光饱和光合速率较对照的植株高 ;而生长在空气 NH3增高下的 NH 4- N和 NH4 NO3- N的大叶相思 ,当光强在 70 0 μmol·m- 2 ·s- 1左右时 Pn 达到最大值 ,较对照植株的要高。而当光强 >70 0 μmol·m- 2·s- 1时 ,Pn 降低 ,且较生长在对照条件下的低。表明在空气 NH3增高下生长的 NH 4- N和 NH4 NO3- N植株 ,其净光合速率 Pn会受到强光抑制。空气 NH3增高并不明显改变光呼吸 ( Rd)和无光呼吸下的 CO2 补充点 (Γ* )。无论生长在何种氮源下的大叶相思 ,其最大Ru BP饱和羧化速率 ( Vcmax)和最大电子传递速率 ( Jmax)均较生长在对照植株的高 ( P<0 .0 5 ) ,其叶氮含量亦较高 ( P<0 .0 5 ) ,其碳氮比较对照的低。在空气 NH3增高下 ,无论何种氮源生长的大叶相思 ,其 PR和 PB明显高于对照的植株 ,表明大叶相思能从空气 NH3中摄取和同化氮 ,增加氮积累和有利于 Rubisco和电子传递组分的合成 ,增高光合速率。空气 NH3增高可能有利于 Rubisco和电子传递组分的合成 ,在较低光强下能增高光合速率。空气 NH3增高可能有利于退化生态系统的生态恢复过程中的氮积累和先锋植物的早期生长。  相似文献   

4.
6个不结球白菜品种光合作用特性的研究   总被引:18,自引:2,他引:16  
对6个不结球白菜品种的光合作用特性进行了研究。结果表明,在800μmol·m-2·s-1的光强下,不结球白菜的净光合速率以‘正大抗热青3号’最高,达16.37μmol CO2·m-2·s-1,其光合作用表观量子效率、羧化效率和水分利用效率也最高,分别为0.0442、0.0854mol·m-2·s-1和6.20μmol CO2·mmol-1H2O;暗呼吸速率以‘绿星’最低,为2.24μmol CO2·m-2·s-1;Pn-PFD响应曲线显示,在光强300μmol·m-2·s-1以下,各品种的净光合速率差异较小,在光强为300~1000μmol·m-2·s-1区段时,净光合速率随着光照强度增加而迅速增加。‘正大抗热青3号’光饱和点最高,达1910.3μmol·m-2·s-1,其光饱和点的净光合速率也最高,达20.2μmol CO2·m-2·s-1;不结球白菜不同品种净光合速率日变化进程相似,不论数值高低均呈双峰曲线型,有明显的“午休”现象。  相似文献   

5.
强光(800μmol·m-2·s-1)下供应铵态氮的番茄植株与供应硝态氮的相比,其生长受到显著抑制,谷氨酰胺合成酶(GS)活性和光呼吸速率显著下降,同时净光合速率(Pn)和叶绿素荧光参数(Fv/Fm、Fv/F.)值下降;而弱光(200μmol·m-2·s-1)下供应铵态氮与硝态氮植株之间的这些参数差异不显著.  相似文献   

6.
为了解析施氮和短时光辐射变化下毛竹幼苗的光合限速因子,该文对毛竹幼苗进行施氮处理,并在不同光照辐射条件下(高光:1200μmol·m-2·s-1,低光:200μmol·m-2·s-1)测定其光响应曲线和CO2响应曲线,并利用改进的FvCB模型研究了毛竹幼苗的光合特性.结果表明:(1)经过施氮处理的毛竹幼苗生物量显著高于...  相似文献   

7.
 研究了温室条件下紫外线-B(UV-B)辐射(0.029 J·m-2·s-1)和外施α-萘乙酸(α-NAA)(2 mg·L-1)相互作用对栝楼(Trichosanthes kirilowii)幼苗生长及蒸腾速率的影响。本实验设一个对照(T0)和3个处理:外施α-NAA(T1),增加UV-B辐射(T2),增加UV-B辐射并外施α-NAA(T3)。实验结果:增强UV-B辐射明显降低栝楼的株高及叶面积,根、茎、叶重均较对照低,因而总生物量也较对照低,干物质积累量减少。UV-B辐射增强,对栝楼植株含水量几乎无影响,但却明显增加叶气孔阻力,降低蒸腾速率。与对照(T0)相比,外施α-NAA(T1)明显增加株高及叶面积,根、茎、叶重均增加,因而单株总生物量较对照增加,但干物质积累量增幅不大,植株水分含量较对照略高;叶气孔阻力呈降低趋势,蒸腾速率呈增大趋势。在有UV-B辐射下外施α-NAA(T3),与T2相比,植株高度、叶重及叶面积降低趋势明显减轻,但根、茎生物量,单株总生物量及干物质积累量并无明显增加;叶气孔阻力降低,蒸腾速率增大。分析认为,栝楼幼苗根系发达,根冠比接近1,而UV-B辐射下补充α-NAA对根、茎影响小,同时本试验处理时间短(5周),表现为对生物量增加及干物质积累量的影响效果不明显,但株高、叶面积明显增加,且在一定程度上减小了叶的气孔阻力,增大了蒸腾速率。结果表明:UV-B辐射能对栝楼的根、茎、叶生物量及干物质积累量产生影响,同时也能引起栝楼叶气孔阻力增加及蒸腾速率降低,但若同时外施α-NAA,则这种影响有减轻的趋势。该结果暗示,α-NAA能增强栝楼幼苗对UV-B辐射的耐受能力,可能是弥补了UV-B辐射引起的IAA含量的降低,减少了内源ABA的积累,减轻叶片气孔阻力,增大蒸腾速率,促进了植株生长。  相似文献   

8.
入侵植物小飞蓬及其伴生植物的光合特性   总被引:2,自引:0,他引:2  
为探讨小飞蓬的入侵机制和制定有效的治理措施,对入侵植物小飞蓬及其主要伴生植物山苦荬和鸭跖草的光合特性进行研究.结果表明:小飞蓬的光饱和点和光补偿点分别为1634.00和23.84 μmol·m-2·s-1,介于2种伴生植物之间;光饱和点下的最大净光合速率为28.12μmol· m-2·s-1,显著高于2种伴生植物;表观量子效率为0.06,与山苦荬差异不显著,但显著高于鸭跖草.小飞蓬的CO2饱和点和CO2补偿点分别为834.00和23.69μmol·mol-1;CO2饱和点下的最大净光合速率为31.97 μmol·m-2·s-1,介于2种伴生植物之间;羧化效率为0.078,显著高于伴生植物.有效光合辐射和CO2浓度的变化对小飞蓬及其伴生植物的气孔导度、蒸腾速率影响不显著,但显著影响其水分利用率.小飞蓬具有较高的光合速率和物质积累能力,较高的生产力是其成功入侵的重要因素之一.  相似文献   

9.
生长在高CO2 浓度 (70 0± 5 6 μl·L-1) 1周的香蕉叶片 ,其光合速率 (Pn ,μmol·m-2 ·s-1)为 5 .14± 0 .32 ,较生长在大气CO2 浓度 (35 6± 30lμl·L-1)的高 2 2 .1% ,而生长在较高CO2 浓度下 8周 ,叶片Pn较生长在大气CO2 浓度的低 18.1% ,表现香蕉叶片对较长期高CO2 浓度的驯化和光合作用抑制 .生长在高CO2 浓度的香蕉叶片有较低光下呼吸速率 (Rd) ,而不包括光下呼吸的CO2 补偿点则变幅较小 .最大羧化速率 (Vcmax)和电子传递速率 (J)分别较生长在大气CO2 浓度的低 30 .5 %和 14 .8% ,根据气体交换速率计算的表观量子产率 (α ,molCO2·mol-1光量子 ) ,生长在较高CO2 浓度下 8周的叶片为 0 .0 14± 0 .0 1,而生长在大气CO2 浓度下的为 0 .0 2 5±0 .0 0 5 .较高CO2 浓度下叶片的表观量子产率降低 44% .光能转换效率 (electrons·quanta-1)亦从 0 .2 0 3降低至0 .136 .生长在较高CO2 浓度下香蕉叶片的叶氮在Rubicos分配系数 (PR)、叶氮在生物力能学组分分配系数(PB)和叶氮在光捕组分的分配系数 (PL)均较生长在大气CO2 浓度低 ,表明在高CO2 浓度下较长期生长 (8周 )的香蕉叶片多个光合过程受抑制 ,光合活性明显降低 .  相似文献   

10.
液体悬浮培养条件下发菜细胞的光合速率与呼吸速率   总被引:4,自引:0,他引:4  
用液相氧电极测定离体悬浮生长发菜细胞的光合速率和呼吸速率的结果表明,发菜细胞的光补偿点为15 ̄16μmol·m-2·s-1,光饱和点为90μmol·m-2·s-1,光抑制点为190μmol·m-2·s-1。25℃下发菜细胞光合速率最高,呼吸速率则在10 ̄50℃范围内随温度升高而增强。发菜细胞光合作用的最适pH值为7.0 ̄7.5,呼吸作用最适pH值为9.0。BG110无氮培养基中添加30mmol·L-1NaNO3,发菜细胞的光合速率增加约20%。培养基中Na2HPO4浓度为1.75mmol·L-1时,细胞光合速率和呼吸速率最大,随后保持稳定。钾盐浓度变化对发菜细胞光合速率和呼吸速率的影响不显著。  相似文献   

11.
台湾桤木引种的光合生理特性研究   总被引:36,自引:2,他引:34  
以台湾桤木 Alnusformosana 引种2年生苗木为研究对象,探讨了台湾桤木的光合生理生态特性.结果表明: 1 叶片净光合速率 Pn 具有明显的日变化.中部叶Pn日变化在生长中期表现为双峰曲线型,高峰分别出现在9:00和15:00左右,峰值分别为15.03μmol·m-2·s-1和12.97μmol·m-2·s-1;在生长初期和末期为单峰曲线型.不同部位叶片Pn大小为:中部叶>顶部叶>基部叶. 2 不同部位叶片Pn表现出不同的季节变化特征.中部叶和顶部叶一年有两个高峰,高峰均出现在6月和8月;基部叶只有一个高峰,出现在6月.光合作用具有较广的温度适应范围.自然条件下叶片最大净光合速率为17.67μmol·m-2·s-1;人工条件下为20.2μmol·m-2·s-1,在新的环境条件下表现出较强的光合适应能力. 3 叶片LCP为33.32~67.47μmol·m-2·s-1,LSP为1332~1656μmol·m-2·s-1,具有较低的光补偿点和较高的光饱和点,表现出较强的弱光利用能力和强光利用潜力. 4 台湾桤木CO2补偿点为54.17~74.98μmol·mol-1,CO2饱和点在800μmol·mol-1左右;羧化效率为0.0270~0.0468.表现出较大光合作用潜力和较广的生存适应能力. 5 通径系数分析表明,Cond、Ci、Vpdl和RH是影响叶片光合速率变化最主要的直接作用因子.  相似文献   

12.
蒺藜苜蓿叶片光合作用对盐胁迫的响应   总被引:2,自引:0,他引:2       下载免费PDF全文
为阐明蒺藜苜蓿(Medicago truncatula)叶片光合效率对盐胁迫的响应规律,明确其土壤盐分阈值,该研究以盆栽蒺藜苜蓿幼苗为研究对象,采用加盐的方式人工模拟盐胁迫环境,设置不同浓度NaCl处理(0、50、100、150、200、250、300、400mmol·L-1),利用Li-6400便携式光合测定仪分析了蒺藜苜蓿幼苗光合效率参数对土壤盐分浓度的响应特征。结果表明:(1)蒺藜苜蓿叶片净光合速率(Pn)和光合作用特征参数等具有明显的土壤盐分临界效应。在NaCl浓度为100~200mmol·L-1时,蒺藜苜蓿可维持较高光合生产力,此盐分范围内适宜的光合有效辐射(PAR)为600~1 300μmol·m-2·s-1,出现Pn最大值(20.7μmol·m-2·s-1)的NaCl浓度为150mmol·L-1,对应PAR为1 200μmol·m-2·s-1左右。(2)在NaCl浓度150mmol·L-1时,随着NaCl浓度的增加,表观量子效率(AQY)、光补偿点(LCP)、暗呼吸速率(Rd)和最大光合速率(Pnmax)逐渐增大;在NaCl浓度为150mmol·L-1时,AQY、Rd和Pnmax分别达到最大值0.030、0.605 7μmol·m-2·s-1、19.4μmol·m-2·s-1,而LCP达到最小值19.8μmol·m-2·s-1。(3)NaCl浓度为150mmol·L-1可作为导致蒺藜苜蓿净光合速率下降的气孔限制和非气孔限制因素的转折点,并且随着NaCl浓度升高,其光合速率由气孔限制转为非气孔限制的PAR降低。以上结果表明,蒺藜苜蓿对盐胁迫具有较强的适应性,在较高盐分浓度下可获得较高的光合生产力。  相似文献   

13.
镇江北固山湿地芦苇光合日变化的研究   总被引:21,自引:1,他引:20  
用便携式L I-6400光合测定仪,在晴朗的天气,对芦苇成熟叶片净光合速率(Pn)以及光合有效辐射(Par)、气孔导度(G s)、细胞间CO2浓度(C i)、叶温(T l)、叶周围气温(T a)和蒸腾速率(T r)等影响因子进行田间测定,研究芦苇的光合日变化。结果表明:芦苇净光合速率日变化呈双峰曲线,主峰出现在10:00,次峰出现在15:00,光合“午休”现象明显,且气孔限制是产生“午休”的主要原因。净光合速率日均为20.01μm o l.m-2.s-1,蒸腾速率日均为6.15 mm o l.m-2.-s 1,光补偿点为98μm o l.m-2.-s 1,光饱和点为2 125μm o l.m-2.-s 1(自然状态下达不到),表观光量子效率为0.060 4 m o l.m o-l 1,暗呼吸速率为2.91μm o l.m-2.-s 1,CO2补偿点为53μm o l.m o-l 1,饱和点为1 368μm o l.m o-l 1,羧化效率为0.064 7。数据显示,芦苇是一种高光效阳性植物,对于其资源的合理利用及其对湿地生态系统的稳定意义重大。  相似文献   

14.
以金潮种铜藻(Sargassum horneri)为对象,探讨了不同硝态氮水平下光照强度对其生长和光合生理特性的影响,以期为金潮暴发机制的研究提供一定的参考。实验设置了高(100μmol·L-1)、低(自然海水,50μmol·L-1) 2个硝态氮浓度和高(150μmol photons·m-2·s-1)、中(60μmol photons·m-2·s-1)、低(10μmol photons·m-2·s-1)三个光照水平,检测了藻体在不同硝态氮浓度和光照条件下适应培养7 d后生长、色素含量、可溶性糖含量、可溶性蛋白含量、氮吸收速率及最大光合放氧速率(Pmax)等生理指标的变化。结果表明:氮浓度相同时,铜藻的生长速率、可溶性糖含量、可溶性蛋白含量、氮吸收速率、Pmax均随光照强度的增加而增加,而色素含量随着光照强度的增加而降低;低氮条件下,除类胡萝卜素外,以上指标在高光处理下均显著高于低光处理(P0.05);高氮条件下,除可溶性糖外,以上指标在高光条件下也均显著高于低光处理(P0.05);同一光照强度下,色素及可溶性蛋白含量、氮吸收速率及Pmax随氮浓度的增加而增加;可溶性糖含量随着硝态氮浓度的增加而减少;且在3个光照条件下,高氮处理下藻体的Pmax均显著高于低氮处理。总之,不同光照和氮浓度处理7 d后,高光、高氮适应后的藻体表现出较高的生长和光合作用潜能。铜藻断裂后漂浮于海面极易获得较高光强条件,而富营养海水中的高氮条件会刺激铜藻的光合潜能而使其加速生长,进而加剧铜藻金潮的暴发。  相似文献   

15.
濒危植物毛瓣金花茶与其同属广布种茶光合特性的比较   总被引:3,自引:0,他引:3  
毛瓣金花茶为山茶科山茶属植物,该研究分别对野生种群和栽培种群的毛瓣金花茶及其同属广布种茶的光合特性进行了测定及差异比较。结果表明:在野生和栽培环境下,毛瓣金花茶的光补偿点(LCP)(分别为1.17和3.87μmol·m-2·s-1)和光饱和点(LSP)(分别为395.8和423.6μmol·m-2·s-1)均较低,最大净光合速率(Pmax)(分别为4.25和3.91μmol·m-2·s-1)较小,是典型的阴生植物;而茶的LCP(分别为6.57和9.09μmol·m-2·s-1)较低,LSP(分别为765.0和809.6μmol·m-2·s-1)较高,Pmax(分别为9.37和9.75μmol·m-2·s-1)较大,为耐荫植物。野生和栽培的毛瓣金花茶的Pmax、表观量子效率(AQY)、最大羧化速率(Vcmax)、最大电子传递速率(Jmax)和潜在最大净光合速率(Pmax)均显著低于茶(P0.05),这表明毛瓣金花茶的光合能力和CO2利用能力都比茶要弱。栽培的毛瓣金花茶叶片的Chla、Chlb、Chl(a+b)含量与茶相比无显著差异(P0.05),表明毛瓣金花茶较低的光合能力与其叶绿素含量无关。野生和栽培的毛瓣金花茶的叶面积与茶相比无显著差异(P0.05),而比叶重则显著高于茶(P0.05),与茶相比,毛瓣金花茶对光强的适应范围狭窄,光合能力和CO2利用能力低下,这可能是其分布狭窄的重要生理原因。  相似文献   

16.
UV-B辐射对香蕉光合作用和不同氮源利用的影响   总被引:14,自引:0,他引:14       下载免费PDF全文
生长在NO3^--N、NH4^--N和NH4NO3-N的香蕉叶片有相近似的最大光合速率,UV-B辐射引起生长在不同氮源的香蕉叶片光合速率、表现量子产率和光肥利用效率的降低。UV-B辐射使生长在不同氮源的植株叶面积干重和叶氮含是降低。生长在NH4^--N的植株Vcmax和Jmax均较生长在其它氮源的高。UV-B辐射引起生长在NH4^-N的植株Vcmax和Jmax降低较相同处理的NO3^--N和NH4NO3-N植株明显,表明生长在NH4^ -N的香蕉对UV-B辐射更加敏感。UV-B辐射改变植株的叶片的碳氢比和碳氮比。经过UV-B辐射处理的NH4^ -N生长植株的碳氮生长在NO3^--N和NH4NO3-N的低。UV-B辐射可能改变植株对不同氮源的吸收利用,从而引起碳氮代谢和酸碱调节的变化。UV-B辐射降低叶氮在Rubisco和生物力能学组分的分配系数,可能使这些组分合成减少,使叶片光调节的变化。UV-B辐射降低叶氮在Rubisco和生物力能学组分的分配系数,可能使这些组分合成减少,使叶片光合速率下降。结果表明,生长在不同氮源的香蕉植树对UV-B辐射有不同响应,NH4^ -N有利于主要光合参数增高,但其对UV-B辐射亦最为敏感。氮供应受限制或植株生长在中性盐如NH4NO3-N则对UV-B辐射不甚敏感。  相似文献   

17.
弱光对樱桃叶片膜脂过氧化的影响   总被引:18,自引:0,他引:18  
以无性繁殖的一年生莱阳矮樱桃 (PrunuspseudocerasusL .“Laiyang”)幼苗为试材 ,研究了弱光对樱桃叶片膜脂过氧化的影响。结果表明 :随着光照强度的减弱 ,樱桃叶片的净光合速率降低 ;而MDA含量和膜保护酶活性在弱光下也发生明显变化 ,其中MDA含量和POD活性上升 ;CAT活性下降 ;SOD在 36 6 μmol·m-2 ·s-1和 5 33.8μmol·m-2 ·s-1光强下活性升高 ,而在 2 2 8.8μmol·m-2 ·s-1和 83.9μmol·m-2 ·s-1光强下活性下降。  相似文献   

18.
方兴  钟章成 《生态学报》2012,32(23):7411-7420
以谷子(Setaria italica(L)Beauv.)为对象,从拔节期开始持续给予低氮(1.875 mmol/L)和高氮(15 mmol/L)两种氮供应条件并从抽穗期开始进行26 d两种强度(4.29、7.12 kJ·m-2·d-1)的增强UV-B辐射处理,研究了谷子叶中光合色素含量、类黄酮含量和苯丙氨酸解氨酶(PAL)活性的变化.结果表明:与高氮供应条件相比,低氮供应条件明显降低了谷子叶中光合色素含量但提高了类胡萝卜素/叶绿素含量比值;在开花期中段和灌浆期中段,高氮供应条件下谷子叶中光合色素含量对增强UV-B辐射比低氮供应条件下的谷子更敏感.从灌浆期开始到处理结束,两种影响因子对谷子叶中类黄酮含量均有显著影响,增强UV-B辐射导致谷子叶中类黄酮含量逐渐升高,且相同增强UV-B辐射强度下低氮供应条件下的谷子叶中类黄酮含量明显高于高氮供应条件下的谷子.谷子叶中PAL活性对两种影响因子的响应较类黄酮含量更加敏感,低氮供应条件使谷子叶中PAL活性明显提高.结合上述指标的相关性分析结果可知,低氮供应条件加强了处于繁殖期主要阶段的谷子叶中类黄酮的积累,并使谷子叶中的类胡萝卜素/叶绿素含量比值明显提高,进而有助于维持谷子叶中光合色素含量在增强UV-B辐射条件下的相对稳定性,对植株抵抗UV-B辐射伤害有利.  相似文献   

19.
方兴  钟章成 《生态学杂志》2015,(4):997-1003
以谷子(Setaria italica(L.)Beauv.)为研究材料,从拔节期开始持续浇灌1.88、15mmol·L-12种氮供应水平营养液,从抽穗期开始对材料进行增强UV-B辐射处理(14.7μW·cm-2),研究了谷子叶片中总叶绿素、可溶性物质及紫外吸收物质的含量在开花期期间的变化。结果表明:与较高氮供应水平相比,无论是否进行增强UV-B辐射,较低氮供应水平明显降低了谷子叶中总叶绿素、可溶性蛋白的含量,但提高了其紫外吸收物质的含量;与较低氮供应水平相比,较高氮供应水平下的谷子叶中总叶绿素含量在开花期初期和中期,可溶性蛋白含量在开花期中期对增强UV-B辐射处理更敏感;氮供应水平虽然对开花期中期至末期的谷子叶片可溶性糖含量有显著影响,但在整个增强UV-B辐射处理期间,该指标对增强UV-B辐射并不敏感。上述结果表明,较低氮供应水平可促进谷子叶片在开花期期间紫外吸收物质的积累,有利于增强其抵抗UV-B辐射能力,但仍应寻求一个合理范围的氮供应水平,以平衡谷子生殖生长和提高对UV-B辐射抗性的需求。  相似文献   

20.
珍稀蕨类植物扇蕨光合速率与环境因子的关系   总被引:3,自引:1,他引:2  
利用CO2光合测定仪分析了引种栽培的扇蕨叶片的光合补偿点和饱和光强,通过控制叶室的光合有效辐射、CO2浓度、温度和相对湿度,分析了叶片的羧化效率和CO2补偿点,并进行光合有效辐射、温度或相对湿度对光合速率影响的研究。扇蕨叶片光补偿点的光强为5.8μmol·m-2·s-1,饱和光强约为1000μmol·m-2·s-1。叶片的羧化效率为0.02665,CO2补偿点为66.1μmol·mol-1。叶片光合速率在20℃时达到最大值,最适温度为17~27℃。相对湿度20%~80%的试验范围内,叶片光合速率随湿度增加而增大,最适相对湿度条件在60%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号