首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
 生长在供给NO-3 N、NH+4 N和NH4NO3 N氮源下的荫香(Cinnamomum burmanni)幼树暴露在增高空气NH3浓度下30 d。利用气体交换测定和氮分析研究了植株的光合作用、氮利用和氮在光合过程一些组分中的分配,根据Farquhar-von Caemmerer模式得出相关光合参数。结果表明在增高空气NH3下生长于NO-3 N的植株Rubisco最大羧化速率(Vcmax)和最大光合电子传递速率(Jmax)较正常空气下的高,但生长于NH+4 N和NH4NO3 N的植株则较正常空气下的低。无论生长于何种形式氮下的植株,在空气NH3增高下以单位叶面积为基准的叶氮含量(Na)显著增高(p<0.05)。在增高空气NH3下,生长于NO-3 N下的植株,其类囊体氮量(NT)、Rubisco氮(NR)和结合于光合电子传递链的氮(NE)的含量较正常空气下的增高(p<0.05);而生长于NH+4 N和NH4NO3 N下的植株则较正常空气下的低。表明在空气NH3增高下生长于NO-3 N的植株能有效地利用氮合成光合过程必要的组份,而生长于NH+4 N和NH4NO-3 N的植株氮在NT、NR和NE的分配受到部分限制。在空气NH3增高下生长于NO-3 N和NH4NO3 N的植株,其以单位干重为基准的有机氮量较正常空气下的高,但生长于NH+4 N的植株则较正常空气下的低,此外在空气NH3增高下生长于NO-3 N的植株的可溶性蛋白氮较正常空气下增高,而生长在NH+4 N的植株亦见降低。结果表明空气NH3增高可能有利于NO-3 N下生长的荫香植株利用空气中的氮,促进叶片光合速率提高,而空气NH3增高能抑制NH+4 N或NH4NO3 N下生长的荫香植株光合作用和氮的利用和再分配。  相似文献   

2.
比较研究了在不同形式氮源下生长柚树叶片光合对高浓度 CO2 驯化过程中有关参数变化。植株生长在人工混成土壤中 ,分别浇灌含有 2 mmol L- 1N的 NO- 3 - N,NH+ 4 - N和 NH4 NO3- N溶液。空气 CO2 增高处理时向生长植株的开顶透明罩中通入 74.4Pa CO2 ,以空气 CO2 生长的植株为对照。利用 CI- 30 1 ( CID,Inc) CO2 气体交换系统测定叶片光合速率和通过光合作用相关响应曲线计算光合参数。结果表明 ,在 CO2分压倍增下 ,NO- 3 - N生长植株光饱和光合速率较大气 CO2 分压下的高。而生长在 NH+ 4 - N和 NH4 NO3- N的植株光合速率与大气 CO2 分压下的相近 ,表现对高 CO2 的驯化。在空气 CO2 倍增下无论供给何种形式氮源并不影响Γ* ,但可增高 Rd( P<0 .0 5 )。 CO2 分压倍增下供给 NO- 3 - N植株的 Vcmax和 Jmax较大气分压相应的植株高 ,而 NH+ 4 - N和 NH4 NO3- N植株则与大气 CO2分压的相应植株相似 ( P>0 .0 5 )。无论供给何种形式氮源 ,生长在空气 CO2 分压倍增下不改变叶片单位面积干重 ,叶绿素含量和叶片中氮在 Rubisco、生物能学组分和捕光色素复合体组分的分配系数 ;但能改变叶片中氮含量。植物对高 CO2 的驯化可能受到不同形式氮利用性的影响 ,在对高 CO2 驯化过程亦反映叶片中氮在不同光合功能组分  相似文献   

3.
生长在空气 NH3增高下 45 d的 NOˉ3- N大叶相思植株 ,其光饱和光合速率较对照的植株高 ;而生长在空气 NH3增高下的 NH 4- N和 NH4 NO3- N的大叶相思 ,当光强在 70 0 μmol·m- 2 ·s- 1左右时 Pn 达到最大值 ,较对照植株的要高。而当光强 >70 0 μmol·m- 2·s- 1时 ,Pn 降低 ,且较生长在对照条件下的低。表明在空气 NH3增高下生长的 NH 4- N和 NH4 NO3- N植株 ,其净光合速率 Pn会受到强光抑制。空气 NH3增高并不明显改变光呼吸 ( Rd)和无光呼吸下的 CO2 补充点 (Γ* )。无论生长在何种氮源下的大叶相思 ,其最大Ru BP饱和羧化速率 ( Vcmax)和最大电子传递速率 ( Jmax)均较生长在对照植株的高 ( P<0 .0 5 ) ,其叶氮含量亦较高 ( P<0 .0 5 ) ,其碳氮比较对照的低。在空气 NH3增高下 ,无论何种氮源生长的大叶相思 ,其 PR和 PB明显高于对照的植株 ,表明大叶相思能从空气 NH3中摄取和同化氮 ,增加氮积累和有利于 Rubisco和电子传递组分的合成 ,增高光合速率。空气 NH3增高可能有利于 Rubisco和电子传递组分的合成 ,在较低光强下能增高光合速率。空气 NH3增高可能有利于退化生态系统的生态恢复过程中的氮积累和先锋植物的早期生长。  相似文献   

4.
补增UV -B辐射的香蕉叶片光下呼吸速率 (Rd)和不包括光下呼吸的CO2 补偿点 (г ) ,分别为0 .33μmol·m- 2 ·s- 1 和 46.5μl·L- 1 ,较对照植株分别高 5.6%和 1 0 .0 %。在较高CO2 浓度 (>340 μl·L- 1 )条件下的An/θp关系最初直线部分斜率 ,即表观量子产率 (αA)为 0 .0 2 3± 0 .0 0 7,而补增UV B辐射处理的植株则降低 1 3.0 % ,光能转换效率 (δ)亦降低 2 8.6% ,表明UV B辐射明显降低αA 和δ。在高θp(1 1 0 0 μmol·m- 2 ·s- 1 )和Ci<2 0 0 μl·L- 1 条件下 ,对照植株的An/Ci关系为An =0 .0 2 8Ci 1 .44,补增UV B辐射处理的植株则为An =0 .0 2 1Ci 1 .0 1 ,UV B辐射降低羧化限制速率。最大羧化速率 (Vcmax)和电子传导速率的光饱和值 (Jmax)亦较低 ,补增UV B辐射的叶片 ,叶氮在Rubisco的分配系数 (PR)和叶氮在生物力能学组分的分配系数 (PB)分别较对照低 8.1 %和 3.0 % ,叶氮分配到类囊体膜捕光色素蛋白组分的则略见增高 ,UV B辐射降低叶氮在光合循环组分的分配  相似文献   

5.
补增UV-B辐射的香蕉叶片光下呼吸速率(Rd))和不包括光下呼吸的CO2补偿点(г*),分别为0.33μmol·m-2·s-1和46.5μl·L-1,较对照植株分别高5.6%和10.0%。在较高CO2浓度(>340μl·L-1)条件下的An/θp关系最初直线部分斜率,即表观量子产率(α-A)为0.023±0.007,而补增UV-B辐射处理的植株则降低13.0%,光能转换效率(δ)亦降低28.6%,表明UV-B辐射明显降低αA和δ。在高θp(1100μmol·m-2·s-1)和Ci<200μl·L-1条件下,对照植株的An/Ci关系为An=0.028Ci+1.44,补增UV-B辐射处理的植株则为An=0.021Ci+1.01,UV-B辐射降低羧化限制速率。最大羧化速率(Vcmax)和电子传导速率的光饱和值(Jmax)亦较低,补增UV-B辐射的叶片,叶氮在Rubisco的分配系数(PR)和叶氮在生物力能学组分的分配系数(PB)分别较对照低8.1%和3.0%,叶氮分配到类囊体膜捕光色素蛋白组分的则略见增高,UV-B辐射降低叶氮在光合循环组分的分配。  相似文献   

6.
不同光强下焕镛木和观光木的光合参数变化   总被引:21,自引:0,他引:21       下载免费PDF全文
 生长在全日光强下的焕镛木(Woonyoungia septentrionalis)和观光木(Tsoongiodendron lotungensis)幼树叶片的最大光合速率、表观量子产率和光能转换效率均较生长在40%和20%日光强的高。当生长光强从全日光强降低至40%日光强时,焕镛木的表观量子产率和光能转换效率分别降低13.1%和6.3%,而观光木则相应分别降低23.8%和33.4%。生长光强降低至40%日光强时,焕镛木的Rubisco最大羧化速率(Vcmax)未见变化;而最大电子传递速率(Jmax)则降低14.1%,表明Jmax对光强降低的响应较Vcmax敏感。当生长光强从全日光强降低到40%和20%日光强时,观光木的Vcmax分别降低7.7%和31.7%,而Jmax则分别降低9.7%和42%。光强从全日光强降低至40%日光强,焕镛木叶氮在Rubisco和捕光叶绿素蛋白复合体中的分配系数没有明显改变,而叶氮在生物力能学组分中的分配系数降低则较为明显(20.4%),表明生长光强降低对叶氮在光合电子传递链组分分配的影响较在Rubisco的大。结果表明,焕镛木表现阳生树种特性,在迁地保育中宜选择向阳小生境种植,而观光木较耐荫,可种植在较遮荫的环境。  相似文献   

7.
氮素对红波罗花光合作用和生长的影响   总被引:3,自引:1,他引:2  
以三年生红波罗花为试验材料,比较了不同氮处理下植株的叶片性状、气体交换特性、叶氮分配、叶绿素荧光和生长参数,探讨了在高山环境中氮素对红波罗花光合特性和生长的影响.结果表明:不施氮时,虽然红波罗花减少了叶氮在捕光复合体中的分配,但还是出现了光抑制现象,并且由于叶氮含量(N)、叶绿素含量(Chl)和叶氮在光合组分中的分配量是最少的,导致光合能力最低,生长最缓.随外界施氮量的增加,红波罗花的N,Chl,叶肉厚度、叶氮在光合组分中的分配量(NR、NB、NL),光能利用效率均随之增加,光合能力相应增强.三个施氮处理中,红波罗花分配给生物力能学组分的叶氮(NB)多于分配给Rubisco的(NR),从而导致Jmax/Vcmax增加,有利于其适应高山低温和高光强.施氮量增加,植株的相对生长速率(RGR)增加,这对于红波罗花当年的开花繁殖,以及来年的生长发育都非常有利.当施氮量超过0.2g/kg基质时,植株的N,Chl,叶肉组织厚度、光合速率以及RGR都不再显著增加,因此当土壤中纯氮含量为220~230mg/kg时,即能满足红波罗花较佳光合和生长所需.  相似文献   

8.
柚树叶片CO2驯化的光合参数变化   总被引:3,自引:3,他引:0  
柚树(Citrus grandis)幼树生长在砂和磋石的生长介质,每周供给0.05mmol P(正常P,P)和0.1mmol P(高磷,2P)的营养液.植株分别生长在空气CO2分压(约39Pa)和倍增CO2分压(81±5Pa)下45d,利用CI-301PS(CID,Inc)光合作用测定系统在较高光强(1150μmol·m^-2·s^-1)下测定叶片光合速率并得出的Pn-Pi关系曲线和在较高CO2分压(PCO2,56Pa)下得出Pn-PAR关系曲线计算有关光合参数。结果表明,大气CO2分压下2P植株最大光合速率较P植株高13.3%,倍增CO2分压下,无论P或2P植株最大光合速率较大气CO2分压下相应植株低,但在倍增CO2分压下2P植株较P植株高,且2P植株有较P植株高的表观量子产率和光能利用效率(P<0.05),但并不改变г^*、Rd和Rubisco羧化速率(Vc)和氧速率的比率(P>0.05)在大气CO2分压下2P植株的Vcmax和Jmax较P植株分别高83%和12.5%,在倍增CO2分压下2P植株的Vcmax和Jmax均较P植株高,柚树在高CO2驯化中改变叶N在Rubisco和捕光组分分配系数,但不改变叶N在光合电子传递链的分配系数,结果表明,增加P供给可以促进高CO2分压下光合碳循环中P的周转,提高倍增CO2分压下植株的光合速率,调节柚树叶片的CO2驯化的光合参数。  相似文献   

9.
供氮和增温对倍增二氧化碳浓度下荫香叶片光合作用的影响   总被引:15,自引:3,他引:12  
供给0~0.6 mg N的盆栽荫香(Cinnamomum burmannii)幼树分别生长在倍增CO 2(+CO2,731 μmol·mol-1)和正常空气CO 2浓度(CO 2,365 μmol·mol-1)的生长箱内,昼夜温度分别为25/23 ℃和32/25 ℃,自然光照下生长30 d.以生长在CO2和25/23 ℃下的植株为对照研究增温和氮对+CO2叶片光合作用的影响.结果表明,在+CO2和25/23 ℃下无氮和氮处理植株的平均光合速率(Pnsat)较+CO2和32/25 ℃下的叶片高5.1%,温度增高降低叶片Pnsat;而Pnsat随供氮而增高.在+CO2条件下,生长在32/25 ℃下的叶片Rubisco最大羧化速率(Vcmax)和最大电子传递速率(Jmax)较25/23 ℃下的低(P<0.05),温度增高降低+CO2下叶片的Vcmax和Jmax在+CO2下叶片光合呼吸速率(Rp)较低,生长温度增高提升Rp.在CO2下生长温度从25/23 ℃增至32/25 ℃,叶片的Rubisco含量(NR)和Rubisco活化中心浓度(M)降低,而供氮能增高NR和M.供氮能减缓温度增高对倍增CO2下荫香叶片光合作用的限制.  相似文献   

10.
采用室内营养液培养,聚乙二醇(PEG6000)模拟水分胁迫处理、HgCl2抑制水通道蛋白活性的方法,在3种供氮形态下(NH4^+-N/NO36-N为100/0、50/50和0/100),研究了水稻苗期水分吸收、光合及生长的状况。结果表明,在非水分胁迫下,水稻单位干重吸水量以单一供NO3^--N处理最高,加HgCl2抑制水通道蛋白活性后,单一供NO3^--N、NH4^+-N和NH4^+-N/NO3^--N为50,50处理的水稻水分吸收分别下降了9.6%、20.7%和16.0%;但在水分胁迫下,单一供N03^--N的处理水分吸收量显著降低,低于其它2个处理,加HgCl2抑制水通道蛋白活性后,水分吸收量分别降低了1.0%、18.8%和23.5%。在2种水分条件(水分胁迫与非水分胁迫)下,净光合速率、气孔导度、蒸腾速率和细胞间隙CO2浓度等指标均以单一供NH4^+-N处理最大,NH4^+-N/NO3^--N为50,50处理次之,单一供NO3^--N处理最小。HgCl2处理结果表明,不同形态氮素营养能够影响水稻幼苗根系水通道蛋白活性。在2种水分条件下,NH4^+-N/N03^--N为50,50处理的生物量(干重)均最大。本研究为水稻苗期合理施肥以壮苗提供了理论依据。  相似文献   

11.
Aims In Mediterranean-type ecosystem, the Cape Fynbos, legumes may be able to switch between soil N and atmospheric N 2 sources during growth to adjust the carbon costs of N acquisition. This study investigated the utilization of different inorganic N sources by Virgilia divaricata, a native legume from the Mediterranean-type ecosystem of the Cape Floristic Region.Methods Plants were cultivated in sterile quartz sand, supplied with 25% strength Long Ashton nutrient solution, modified to contain 500 μM Phosphate. At the phosphate level (500 μM), plants were treated with 500 μM NH 4 NO 3 (treatment named N), or grown in N-free nutrient solution and inoculated with effective Burkholderia sp. (Bact.) or treated with combined N sources (500 μM NH 4 NO 3) and inoculated with effective Burkholderia sp. (N+Bact.).Important findings The application of NH 4 NO 3 to the legumes resulted in a greater increase in plant dry matter. Carbon construction costs were higher in plants that were supplied with mineral and symbiotic N sources. Maximum photosynthetic rates per leaf area was maintained, irrespective of the N sources. Although the plant roots were nodulated, the plant dependence on N 2 fixation decreased with addition of N. Roots and nodules of the plants solely reliant on N 2 fixation showed an increase in glutamine content. These results show that V. divaricata is highly adapted for growth at the forest margin. Fynbos and possibly anthropic soils by utilizing both atmospheric and soil N sources.  相似文献   

12.
Several recent studies have suggested that control of isoprene emission rate is in part exerted by supply of extrachloroplastic phosphoenolpyruvate to the chloroplast. To test this hypothesis, we altered PEP supply by differential induction of cytosolic nitrate reductase (NR) and PEP carboxylase (PEPC) in plants of Populus deltoides grown with NO3- or NH4+ as the sole nitrogen source. Growth with 8 mM NH4+ produced a high leaf nitrogen concentration, compared with 8 mM NO3-, as well as slightly elevated rates of photosynthesis and significantly enhanced rates of isoprene emission and content of dimethylallyl diphosphate (DMAPP, a precursor to isoprene biosynthesis), chlorophyll (a+b) and carotenoids. Growth with 8 mM NO3- resulted in parallel reductions in both leaf isoprene emission rate and DMAPP. The differential effects of growth with NH4+ or NO3- were not observed when plants were grown with 4 mM nitrogen. The effects of reduced DMAPP availability were specific to isoprene emission and were not propagated to higher isoprenoids, as the correlations between nitrogen content and either leaf chlorophyll (a+b) or total carotenoids were unaffected by nitrogen source. Biochemical analysis revealed significantly higher levels of NR and PEPC activity in leaves of 8 mM NO3- -grown plants, consistent with their fundamental roles in nitrate assimilation. Taken together, these results support the hypothesis that foliar assimilation of NO3- reduces isoprene emission rate by competing for carbon skeletons (mediated by PEPC) within the cytosol and possibly reductant within the chloroplast. Cytosolic competition for PEP is a major regulator of chloroplast DMAPP supply, and we offer a new "safety valve" hypothesis to explain why plants emit isoprene.  相似文献   

13.
Photosynthetic rates and allocation of dry matter, nitrogen, and nonstructural carbohydrates were determined during onset of and recovery from a nitrogen stress for reproductive soybean (Glycine max [L.] Merrill cv Ransom) plants. Until the beginning of seed fill, non-nodulated plants were grown in flowing solution culture with 1.0 mM NO3- in a complete nutrient solution. One set of plants then was transferred to minus-nitrogen solution for 24 d of seed fill; a second set was transferred to a minus-nitrogen solution for 14 d followed by return to the complete solution with 1.0 mM NO3- for the remaining 10 d of seed fill; and a third set was continued on the complete solution. Net CO2 exchange rates of individual leaves, which remained nearly constant during seed fill for nonstressed plants, declined at an accelerated rate during onset of nitrogen stress as the specific content of reduced nitrogen in the leaves was decreased by remobilization of nitrogen to support pod growth. The rate of nitrogen remobilization out of leaves initially was relatively greater than the decrease in photosynthetic rate. While rate of pod growth declined in response to the developing nitrogen stress, photosynthetic assimilation of carbon exceeded reproductive demand and nonstructural carbohydrates accumulated within tissues. Following resupply of exogenous NO3-, specific rate of NO3- uptake by roots was enhanced relative to nonstressed plants. While there was little increase in content of reduced nitrogen in leaves, net remobilization of nitrogen out of leaves ceased, and the decline in photosynthetic rate stabilized at about 51% of that for nonstressed plants. This level of photosynthesis, combined with the availability of elevated pools of carbohydrates accumulated during stress, was sufficient to support the increases in both the specific rates of NO3- uptake and the rate of pod growth during recovery.  相似文献   

14.
Ultraviolet-B radiation (UVBR: 290-320 nm) inhibited ammonium uptake (pNH4) and nitrate uptake (pNO3) in natural plankton assemblages collected during a transect from 37° N to 55° N in the Pacific Ocean. Comparison of responses in pNH4 to ambient solar- and lamp-enhanced UVBR spectra allowed calculation of an action spectrum for pNH4 inhibition. The slope of the action spectrum for Pnh4 is half as steep as action spectra for UVBR inhibition of photosynthetic carbon uptake. Consequently, WBR-induced photoinhibition of pNH4 extends to greater depths than inhibition of carbon fixation due to the greater relative effect of longer UVBR wavelengths. Inhibition of pNH4 was dependent upon UVBR dose when doses were weighted by the pNH4 action spectrum. Dependence of WBR inhibition of pNH4 on dose rate was not apparent. We found that near-surface pNH4 and pNO3 can be overestimated in excess of 50% when measured using standard incubation vessels made of UVBR-absorbing materials such as polycarbonate.  相似文献   

15.
Understanding of the influences of root-zone CO2 concentration on nitrogen (N) metabolism is limited. The influences of root-zone CO2 concentration on growth, N uptake, N metabolism and the partitioning of root assimilated 14C were determined in tomato (Lycopersicon esculentum). Root, but not leaf, nitrate reductase activity was increased in plants supplied with increased root-zone CO2. Root phosphoenolpyruvate carboxylase activity was lower with NO3(-)- than with NH4(+)-nutrition, and in the latter, was also suppressed by increased root-zone CO2. Increased growth rate in NO3(-)-fed plants with elevated root-zone CO2 concentrations was associated with transfer of root-derived organic acids to the shoot and conversion to carbohydrates. With NH4(+)-fed plants, growth and total N were not altered by elevated root-zone CO2 concentrations, although 14C partitioning to amino acid synthesis was increased. Effects of root-zone CO2 concentration on N uptake and metabolism over longer periods (> 1 d) were probably limited by feedback inhibition. Root-derived organic acids contributed to the carbon budget of the leaves through decarboxylation of the organic acids and photosynthetic refixation of released CO2.  相似文献   

16.
Lu YX  Li CJ  Zhang FS 《Annals of botany》2005,95(6):991-998
BACKGROUND AND AIMS: Ammonium can result in toxicity symptoms in many plants when it is supplied as the sole source of N. In this work, influences of different nitrogen forms at two levels (2 and 15 mm N) on growth, water relations and uptake and flow of potassium were studied in plants of Nicotiana tabacum 'K 326'. METHODS: Xylem sap from different leaves was collected from 106-d-old tobacco plants cultured in quartz sand by application of pressure to the root system. Whole-shoot transpiration for each of the treatments was measured on a daily basis by weight determination. KEY RESULTS: Total replacement of NO(3)(-)N by NH(4)(+)-N caused a substantial decrease in dry weight gain, even when plants grew under nutrient deficiency. Increasing nutrient concentration resulted in a greater net dry weight gain when nitrogen was supplied as NO(3)(-) or NH(4)NO(3), but resulted in little change when nitrogen was supplied as NH(4)(+). NH(4)(+)-N as the sole N-source also caused reduction in transpiration rate, changes in plant WUE (which depended on the nutrient levels) and a decrease in potassium uptake. However, the amount of xylem-transported potassium in the plants fed with NH(4)(+) was not reduced: it was 457 % or 596 % of the potassium currently taken up at low or high nutrient level, respectively, indicating a massive export from leaves and cycling of potassium in the phloem. CONCLUSIONS: Ammonium reduces leaf stomatal conductance of tobacco plants. The flow and partitioning of potassium in tobacco plants can be changed, depending on the nitrogen forms and nutrient levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号