首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antimicrobial peptide CM4 is a 35-residue cationic peptide. To explore a new approach for the expression and purification of CM4 in Escherichia coli, the CM4 gene was cloned into the vector pET32a to construct an expression vector pET32a-CM4. The fusion protein Trx-CM4, purified by Ni2+-chelating chromatography, was cleaved by hydroxylamine hydrochloride to release recombinant CM4. Purification of recombinant CM4 was achieved by reverse HPLC chromatography, and about 1.4 mg/l active recombinant CM4 with the purity more than 98% was obtained. The recombinant CM4 showed antimicrobial activities that were similar to synthetic one. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

2.
Antibacterial peptide CM4 (ABP-CM4) is a small cationic peptide with broad-spectrum activities against bacteria, fungi, and tumor cells, which may possibly be used as an antimicrobial agent. We report here the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of cationic antibacterial peptide ABP-CM4. The fusion protein expressed in a soluble form was purified to a purity of 90% by Ni-IDA chromatography and 112 mg protein of interest was obtained per liter of fermentation culture. After the SUMO–CM4 fusion protein was cleaved by the SUMO protease at 30 °C for 1 h, the cleaved sample was re-applied to a Ni-IDA. Finally, about 24 mg recombinant CM4 was obtained from 1 l fermentation culture with no less than 96% purity and the recombinant CM4 had similar antimicrobial properties to the synthetic CM4. Thus, the SUMO-mediated peptide expression and purification system potentially could be employed for the production of recombinant cytotoxic peptides.  相似文献   

3.
Li BC  Zhang SQ  Dan WB  Chen YQ  Cao P 《Biotechnology letters》2007,29(7):1031-1036
The antibacterial peptide CM4 (ABP-CM4), isolated from Chinese Bombys mori, is a 35-residue cationic, amphipathic α-helical peptide that exhibits a broad range of antimicrobial activity. To explore a new approach for the expression of ABP-CM4 in E. coli, the gene ABP-CM4, obtained by recursive PCR (rPCR), was cloned into the vector pET32a to construct a fusion expression plasmid. The fusion protein Trx-CM4 was expressed in soluble form, purified by Ni2+-chelating chromatography, and cleaved by formic acid to release recombinant CM4. Purification of rCM4 was achieved by affinity chromatography and reverse-phase HPLC. The purified of recombinant peptide showed antimicrobial activities against E. coli K12D31, Penicillium chrysogenum, Aspergillus niger and Gibberella saubinetii. According to the antimicrobial peptide database (http://aps.unmc.edu/AP/main.html), 116 peptides contain a Met residue, but only 5 peptides contain the AspPro site, indicating a broader application of formic acid than CNBr in cleaving fusion protein. The successful application to the expression of the ABP-CM4 indicates that the system is a low-cost, efficient way of producting milligram quantities of ABP-CM4 that is biologically active.  相似文献   

4.
Wang Q  Zhu F  Xin Y  Liu J  Luo L  Yin Z 《Biotechnology letters》2011,33(11):2121-2126
A novel production method in Escherichia coli for an antimicrobial peptide of 21 amino acids, buforin IIb, which is a synthetic analog of buforin II, has been developed. The buforin IIb gene was cloned into the vector pET32a to construct an expression vector pET32a–buforin IIb. The fusion protein Trx-buforin IIb, purified by nickel nitrilo-triacetic acid (Ni-NTA) resin chromatography, was cleaved by hydroxylamine hydrochloride to release recombinant buforin IIb. Purification of recombinant buforin IIb was achieved by HPLC: about 3.1 mg/l active recombinant buforin IIb with purity >99% was obtained. The recombinant buforin IIb showed antimicrobial activities that were similar to the synthetic one.  相似文献   

5.
Attacin, a 20 kDa antibacterial peptide, plays an important role in immunity. To understand this gene better, gene cloning, expression and biological activity detection of Attacin A was carried out in present study. The full-length open reading frame (ORF) coding for Attacin A gene was generated using RT-PCR which takes total RNA extracted from Drosophila as the template. The gene was inserted directionally into the prokaryotic expression vector pET-32a (+). The resulting recombinant plasmid was transformed into E. coli Rosetta. SDS–PAGE was carried out to detect the expression product which was induced by IPTG. The antimicrobial activity and hemolysis activity were tested in vitro after purification. Agarose gel electrophoresis indicated that the complete ORF of Attacin A gene has been cloned successfully from Drosophila stimulated by E. coli which includes 666 bp and encodes 221 AA. The gene encoding mature Attacin A protein was amplified by PCR from the recombinant plasmid containing Attacin A, which includes 570 bp in all. SDS–PAGE analysis demonstrated that the fusion protein expressed was approximately 39.2 kDa. Biological activities detection showed that this peptide exhibited certain antibacterial activity to several G− bacteria, as well as minor hemolysis activity for porcine red blood cells. In conclusion, Attacin A gene was cloned and expressed successfully. It was the basis for further study of Attacin.  相似文献   

6.
7.
Antimicrobial peptide CM4, a small cationic linear α-helical peptide that consists of 35 amino acids, was isolated from Bombyx mori. To improve the expression level of CM4 in Escherichia coli, tandem repeats of CM4 gene were constructed and expressed as fusion proteins (TrxA-nCM4, n = 1, 2, 3,…,8) by constructing the vectors of pET32-nCM4 (n = 1, 2, 3,…,8). Comparison among the expression levels of soluble fusion protein TrxA-nCM4 (n = 1, 2, 3,…,8) suggested that BL21 (DE3)/pET32-3CM4 was an ideal recombinant strain for CM4 production. Under the selected conditions of cultivation and isopropylthiogalactoside (IPTG) induction, the expression level of CM4 was as high as 68 mg/l with about 21% of fusion protein in soluble form, which was the highest yield of CM4 reported so far.  相似文献   

8.
The Aspergillus niger feruloyl esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium with a yield of ~2 mg/l. The recombinant enzyme was purified to homogeneity by anion-exchange and hydrophobic interaction chromatography. The specific activity was determined to be 8,200 U/μg (pH 6.5, 20°C, 3.5 mM 4-nitrophenyl ferulate). The protein had a correct N-terminal sequence of ASTQGISEDLY, indicating that the signal peptide was properly processed. The FAE exhibited an optimum pH of 6–7 and operated optimally at 50°C using ground switchgrass as the substrate. The yeast clone was demonstrated to catalyze the release of ferulic acid continuously from switchgrass in YNB medium at 30°C. This work represents the first report on engineering yeast for the breakdown of ferulic acid crosslink to facilitate consolidated bioprocessing.  相似文献   

9.
10.
The endochitinase DNA and cDNA from Trichoderma sp. were cloned, sequenced and expressed. The cloned DNA and cDNA sequences were 1,476 and 1,275 bp in length, respectively. There were three introns in DNA sequence in comparison with the cDNA sequence. The endochitinase protein contained three regions: the signal peptide, the prepro-region and the mature protein region. The gene fragment encoding the mature endochitinase was ligated into the expression vector pET-28a+, yielding pET-1. The plasmid pET-1 was transformed into the Escherichia coli BL21 (DE3). The clone bearing pET-1 was picked and cultured at 30°C for the expression of endochitinase. SDS-PAGE analysis showed that the endochitinase was expressed in the periplasmic space and the purified protein showed a single band. The activity of 70.2 U/mg was obtained from the cellular extract of the recombinant strain. The activity of endochitinase was 2.5-fold higher at 24 h than at 16 h in the periplasmic space. The optimal pH and temperature of the recombinant endochitinase were determined to be 7.0 and 35°C, respectively. It was relatively stable within the pH range of 5–8. Significant activity stimulation by 1 mM Mg2+ and 5 mM Fe2+ and inhibition by 5 mM Co2+ and 5 mM Hg2+ were observed. The kinetic constants Km, Vmax and Kcat for the hydrolysis of the colloidal chitin were 1.5 mM, 1.37 μmol min−1 and 6.23 min−1, respectively.  相似文献   

11.
Chen Z  Li Z  Yu N  Yan L 《Biotechnology letters》2011,33(4):721-725
The sweet protein monellin gene was expressed in Saccharomyces cerevisiae under the control of the GAL1 promoter and α-factor signal peptide sequence of S. cerevisiae. The gene, which was obtained through mutation of the synthesized single-chain monellin gene, was cloned into an E. coli-yeast shuttle vector pYES2.0 which carries the galactose-inducible promoter GAL1. Then the α-factor signal peptide of S. cerevisiae was linked also, resulting in the secreting expression vector pYESMTA. The recombinant plasmid was subsequently transformed into strain S. cerevisiae INVsc1. The peptide efficiently directed the secretion of monellin from the recombinant yeast cell. A maximum yield of active monellin was 0.41 g l−1 of the supernatant from INVsc1 harboring pYESMTA.  相似文献   

12.
l-glutamine (Gln) is an important conditionally necessary amino acid in human body and potential demand in food or medicine industry is expected. High efficiency of l-Gln production by coupling genetic engineered bacterial glutamine synthetase (GS) with yeast alcoholic fermentation system has been developed. We report here first the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of recombinant Bacillus subtilis GS. In order to obtain GS with high Gln-forming activity, safety and low cost for food and pharmaceutics industry, 0.1% (w/v) lactose was selected as inducer. The fusion protein was expressed in totally soluble form in E. coli, and expression was verified by SDS–PAGE and western blot analysis. The fusion protein was purified to 90% purity by nickel nitrilo-triacetic acid (Ni–NTA) resin chromatography with a yield of 625 mg per liter fermentation culture. After the SUMO/GS fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni–NTA column. Finally, about 121 mg recombinant GS was obtained from 1 l fermentation culture with no less than 96% purity. The recombinant purified GS showed great transferase activity (23 U/mg), with 25 U recombinant GS in a 50 ml reaction system, a biosynthesis yield of 27.5 g/l l-Gln was detected by high pressure liquid chromatography (HPLC) or thin-layer chromatography. Thus, the application of SUMO technology to the expression and purification of GS potentially could be employed for the industrial production of l-Gln.  相似文献   

13.
A 777-bp cDNA fragment encoding a mature alkaline lipase (LipI) from Penicillium cyclopium PG37 was amplified by RT–PCR, and inserted into the expression plasmid pPIC9 K. The recombinant plasmid, designated as pPIC9 K-lipI, was linearized with SalI and transformed into Pichia pastoris GS115 (his4, Mut+) by electroporation. MD plate and YPD plates containing G418 were used for screening of the multi-copy P. pastoris transformants (His+, Mut+). One transformant resistant to 4.0 mg/ml of G418, numbered as P. pastoris GSL4-7, expressing the highest recombinant LipI (rLipI) activity was chosen for optimizing expression conditions. The integration of the gene LipI into the P. pastoris GS115 genome was confirmed by PCR analysis using 5′- and 3′-AOX1 primers. SDS–PAGE and lipase activity assays demonstrated that the rLipI, a glycosylated protein with an apparent molecular weight of about 31.5 kDa, was extracellularly expressed in P. pastoris. When the P. pastoris GSL4-7 was cultured under the optimized conditions, the expressed rLipI activity was up to 407 U/ml, much higher than that (10.5 U/ml) expressed with standard protocol. The rLipI showed the highest activity at pH 10.5 and 25°C, and was stable at a broad pH range of 7.0–10.5 and at a temperature of 30°C or below.  相似文献   

14.
Chymosin can specifically break down the Phe105–Met106 peptide bond of milk κ-casein to form insoluble para-κ-casein, resulting in milk coagulation, a process that is used in making cheese. In this study, in order to obtain an alternative milk coagulant which is safe and efficient, and simultaneously can produce cheese with a good taste, bovine prochymosin B was chosen and constitutively expressed to a high level in Pichia pastoris. The recombinant chymosin was expressed mainly as a secretory form, and it exhibited milk-clotting activity. It was purified by ammonium sulfate fractionation, anion exchange, followed by cation exchange chromatography. A final yield of 24.2% was obtained for the purified enzyme, which appeared as a single band in SDS–PAGE having a molecular mass of approximate 36 kDa. Proteolysis assay showed that it specifically hydrolyzed κ-casein. It was stable at 25–50°C and had optimal activity at 37°C and pH 4.0. The activity of the recombinant chymosin was activated by cations such as Mn2+, Fe3+, Mg2+ and Na+, but inhibited by K+, Co2+, Zn2+, Ni2+, and to a lesser extent by Cu2+. These results suggested that recombinant bovine chymosin is an acid milk coagulant, and it could be considered as a safe and efficient enzyme suitable for use in cheese production.  相似文献   

15.
As a novel important regulator of glucose and lipid metabolism homeostasis, human fibroblast growth factor 21 (hFGF21) has become a potential drug candidate for the treatment of metabolic diseases including obesity, and type 2 diabetes, as well as non-alcoholic fatty liver disease. To improve the production of recombinant hFGF21 to meet the increasing demand in clinical applications, an artificial gene encoding its mature peptide sequence was constructed, cloned into vector pET-3c and then expressed in Escherichia coli Origami B (DE3). Under optimal conditions in a 50-L fermentor, the average bacterial yield and the soluble expression level of recombinant hFGF21 of six batches attained 1750 ± 185 g and 32 ± 1.5%, respectively. The target protein was purified by the combination of nickel-nitrilotriacetic acid affinity chromatography and Sephadex S-100 resin. 5% (w/v) trehalose solution was able to prevent rhFGF21 from degradation effectively. The purity of rhFGF21 was higher than 97%, and the yield was 213 ± 17 mg/L. The preliminary biochemical characterization of rhFGF21 was confirmed using Western blot and peptide map finger analysis. Based on the glucose oxidase–peroxidase assay, the EC50 of glucose uptake activity of the purified rhFGF21 was 22.1 nM.  相似文献   

16.
The hydrogenase gene from Enterobacter cloacae (IIT-BT 08) was amplified and inserted into a prokaryotic expression vector to create a recombinant plasmid (pGEX-4T-2-Cat/hydA). The recombinant plasmid was transformed into a hydrogen-producing strain of Enterobacter aerogenes (ATCC13408). SDS–PAGE and western blot analysis confirmed the successful expression of the GST-tagged hydA protein. Anaerobic fermentation for the production of hydrogen from glucose was investigated using E. aerogenes ATCC13408 and the recombinant strain. The results showed that the hydrogen yield markedly increased, from 442.82 ± 22.61 ml/g glucose in the ATCC13408 strain to 864.02 ± 36.8 ml/g glucose in the recombinant. The maximum rate of hydrogen production was found to be 53.49 ± 3.34 ml l−1 h−1 using 1% (w/v) glucose as the substrate at pH 6.0 and a reaction temperature of 37°C.  相似文献   

17.
18.
The malic enzyme-encoding cDNA (GQ372891) from the oleaginous yeast Lipomyces starkeyi AS 2.1560 was isolated, which has an 1719-bp open reading frame flanked by a 290-bp 5′ untranslated sequence and a 92-bp 3′ untranslated sequence. The proposed gene, LsME1, encoded a protein with 572 amino acid residues. The protein presented 58% sequence identity with the malic enzymes from Yarrowia lipolytica CLIB122 and Aspergillus fumigatus Af293. The LsME1 gene was cloned into the vector pMAL-p4x to express a fusion protein (MBP-LsME1) in Escherichia coli TB1. The fusion protein was purified and then cleaved by Factor Xa to give the recombinant LsME1. This purified enzyme took either NAD+ or NADP+ as the coenzyme but preferred NAD+. The K m values for malic acid, NAD+ and NADP+ were 0.85 ± 0.05 mM, 0.34 ± 0.08 mM, and 7.4 ± 0.32 mM, respectively, at pH 7.3.  相似文献   

19.
To construct an efficient system for the production of recombinant proteins in silkworm (Bombyx mori), we investigated the promoter activity of the silkworm sericin 1, 2, and 3 genes (Ser1, Ser2, and Ser3) using a GAL4/UAS binary gene expression system in transgenic silkworm. The promoter activity of the upstream region of Ser1 was strong, yielding high expression of an enhanced green fluorescent protein (EGFP) transgene in the middle and posterior regions of the middle silk gland (MSG) after day 2 of the fifth instar. The Ser3 upstream region exhibited moderate promoter activity in the anterior MSG, but the Ser2 upstream region did not exhibit any promoter activity. Since the strongest promoter activity was observed for Ser1, we devised a system for the production of recombinant proteins using a GAL4Ser1 promoter construct (Ser1-GAL4). Transgenic silkworms harboring both the Ser1-GAL4 construct and the previously reported upstream activating sequence (UAS)–EGFP construct, which contains the TATA box region of the Drosophila hsp70 gene, yielded approximately 100 μg EGFP per larva. When we then analyzed the TATA box region, signal peptide, and intron sequences for their effects on production from the UAS-EGFP construct, we found that the optimization of these sequences effectively increased production to an average of 500 μg EGFP protein per transgenic larva. We conclude that this binary system is a useful tool for the mass production of recombinant proteins of biomedical and pharmaceutical interest in silkworm.  相似文献   

20.
The endo-β-1, 4-xylanase gene xynA from Aspergillus sulphureus, encoded a lack-of-signal peptide protein of 184 amino acids, was de novo synthesized by splicing overlap extension polymerase chain reaction according to Pichia pastoris protein’s codon bias. The synthetic DNA, composed of 572 nucleotides, was ligated into the downstream sequence of an α-mating factor in a constitutive expression vector pGAPzαA and electrotransformed into the P. pastoris X-33 strain. The transformed yeast screened by Zeocin was able to constitutively secrete the xylanase in yeast–peptone–dextrose liquid medium. The heterogenous DNA was stabilized in the strain by 20-times passage culture. The recombinant enzyme was expressed with a yield of 120 units/mL under the flask culture at 28°C for 3 days. The enzyme showed optimal activity at 50°C and pH 2.4–3.4. Residual activity of the raw recombinant xylanase was not less than 70% when fermentation broth was directly heated at 80°C for 30 min. However, the dialyzed xylanase supernatant completely lost the catalytic activity after being heated at 60°C for 30 min. The recombinant xylanase showed no obvious activity alteration by being pretreated with Na2HPO4-citric acid buffer of pH 2.4 for 2 h. The xylanase also showed resistance to certain metal ions (Na+, Mg2+, Ca2+, K+, Ba2+, Zn2+, Fe2+, and Mn2+) and EDTA. These biochemical characteristics suggest that the recombinant xylanase has a prospective application in feed industry as an additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号