首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A Corynebacterium glutamicum strain with inactivated pyruvate dehydrogenase complex and a deletion of the gene encoding the pyruvate:quinone oxidoreductase produces about 19 mM l-valine, 28 mM l-alanine and about 55 mM pyruvate from 150 mM glucose. Based on this double mutant C. glutamicumaceEpqo, we engineered C. glutamicum for efficient production of pyruvate from glucose by additional deletion of the ldhA gene encoding NAD+-dependent l-lactate dehydrogenase (LdhA) and introduction of a attenuated variant of the acetohydroxyacid synthase (△C–T IlvN). The latter modification abolished overflow metabolism towards l-valine and shifted the product spectrum to pyruvate production. In shake flasks, the resulting strain C. glutamicumaceEpqoldhA △C–T ilvN produced about 190 mM pyruvate with a Y P/S of 1.36 mol per mol of glucose; however, it still secreted significant amounts of l-alanine. Additional deletion of genes encoding the transaminases AlaT and AvtA reduced l-alanine formation by about 50%. In fed-batch fermentations at high cell densities with adjusted oxygen supply during growth and production (0–5% dissolved oxygen), the newly constructed strain C. glutamicumaceEpqoldhA △C–T ilvNalaTavtA produced more than 500 mM pyruvate with a maximum yield of 0.97 mol per mole of glucose and a productivity of 0.92 mmol g(CDW)−1 h−1 (i.e., 0.08 g g(CDW) −1 h−1) in the production phase.  相似文献   

2.
Wild-type Corynebacterium glutamicum produced 0.6 g l−1 xylitol from xylose at a productivity of 0.01 g l−1 h−1 under oxygen deprivation. To increase this productivity, the pentose transporter gene (araE) from C. glutamicum ATCC31831 was integrated into the C. glutamicum R chromosome. Consequent disruption of its lactate dehydrogenase gene (ldhA), and expression of single-site mutant xylose reductase from Candida tenuis (CtXR (K274R)) resulted in recombinant C. glutamicum strain CtXR4 that produced 26.5 g l−1 xylitol at 3.1 g l−1 h−1. To eliminate possible formation of toxic intracellular xylitol phosphate, genes encoding xylulokinase (XylB) and phosphoenolpyruvate-dependent fructose phosphotransferase (PTSfru) were disrupted to yield strain CtXR7. The productivity of strain CtXR7 increased 1.6-fold over that of strain CtXR4. A fed-batch 21-h CtXR7 culture in mineral salts medium under oxygen deprivation yielded 166 g l−1 xylitol at 7.9 g l−1 h−1, representing the highest bacterial xylitol productivity reported to date.  相似文献   

3.
The constant-rate fed-batch production of the polygalacturonic acid bioflocculant REA-11 was studied. A controlled sucrose-feeding strategy resulted in a slight improvement in biomass and a 7% reduction in flocculating activity compared with the batch process. When fed with a 3 g l−1 urea solution, the flocculating activity was enhanced to 720 U ml−1 in 36 h. High cell density (2.12 g l−1) and flocculating activity (820 U ml−1) were obtained in a 10-l fermentor by feeding with a sucrose-urea solution, with values of nearly two times and 50% higher than those of the batch process, respectively. Moreover, the residual sucrose declined to 2.4 g l−1, and residual urea decreased to 0.03 g l−1. Even higher flocculating activity of 920 U ml−1 and biomass of 3.26 g l−1 were obtained by feeding with a sucrose-urea solution in a pilot scale fermentation process, indicating the potential industrial utility of this constant-rate feeding strategy in bioflocculant production by Corynebacterium glutamicum.  相似文献   

4.
A Corynebacterium glutamicum strain (ΔldhA-pCRA717) that overexpresses the pyc gene encoding pyruvate carboxylase while simultaneously exhibiting a disrupted ldhA gene encoding l-lactate dehydrogenase was investigated in detail for succinic acid production. Succinic acid was shown to be efficiently produced at high-cell density under oxygen deprivation with intermittent addition of sodium bicarbonate and glucose. Succinic acid concentration reached 1.24 M (146 g l−1) within 46 h. The yields of succinic acid and acetic acid from glucose were 1.40 mol mol−1 (0.92 g g−1) and 0.29 mol mol−1 (0.10 g g−1), respectively. The succinic acid production rate and yield depended on medium bicarbonate concentration rather than glucose concentration. Consumption of bicarbonate accompanied with succinic acid production implied that added bicarbonate was used for succinic acid synthesis.  相似文献   

5.
The effects of seed maturity, media type, carbon source, and organic nutrient additives on seed germination, protocorm development, and plant growth of Paphiopedilum villosum var. densissimum Z. J. Liu et S. C. Chen were investigated. Micropropagation frequency was enhanced through the use of 200-day-old seed, Knudson C (KC) medium, and the presence of both glucose and coconut milk in the medium. The effects of various plant growth regulators on the frequency of shoot organogenesis in four Paphiopedilum species were also investigated. Explants of P. villosum var. densissimum and P. insigne (Lindl.) Stein incubated in the presence of 5 mg l−1 6-benzyladenine (BA) with 0.5 mg l−1 α-naphthalene acetic acid (NAA) and 0.2 mg l−1 BA with 0.1 mg l−1 NAA, respectively, showed a twofold increase in the frequency of shoot organogenesis. For explants of P. bellatulum (Rchb. f.) Stein and P. armeniacum S. C. Chen et F. Y. Liu, the combination of 5.5 mg l−1 BA with 0.5 mg l−1 NAA and 4 mg l−1 BA with 0.1 mg l−1 NAA, respectively, resulted in the highest frequencies of shoot organogenesis.  相似文献   

6.
In mineral salts medium under oxygen deprivation, Corynebacterium glutamicum exhibits high productivity of l-lactic acid accompanied with succinic and acetic acids. In taking advantage of this elevated productivity, C. glutamicum was genetically modified to produce d-lactic acid. The modification involved expression of fermentative d-lactate dehydrogenase (d-LDH)-encoding genes from Escherichia coli and Lactobacillus delbrueckii in l-lactate dehydrogenase (l-LDH)-encoding ldhA-null C. glutamicum mutants to yield strains C. glutamicum ΔldhA/pCRB201 and C. glutamicum ΔldhA/pCRB204, respectively. The productivity of C. glutamicum ΔldhA/pCRB204 was fivefold higher than that of C. glutamicum ΔldhA/pCRB201. By using C. glutamicum ΔldhA/pCRB204 cells packed to a high density in mineral salts medium, up to 1,336 mM (120 g l−1) of d-lactic acid of greater than 99.9% optical purity was produced within 30 h.  相似文献   

7.
The cell cultures of Cayratia trifolia (Vitaceae) a tropical lianas, were maintained in Murashige and Skoog’s medium containing 0.25 mg l−1 naphthalene acetic acid, 0.2 mg l−1 kinetin and 250 mg l−1 casein hydrolysate. Cell suspension cultures of C. trifolia accumulate stilbenes (piceid, resveratrol, viniferin, ampelopsin) which on addition of 0.1–0.5 mg l−1 morphactin in the medium containing naphthalene acetic acid and kinetin declined. Morphactin or 2 isopentenyl adenine alone at 0.1 mg l−1 concentration enhanced stilbenes which on combination markedly enhanced the yield to ~5 mg l−1 at 15th day.  相似文献   

8.
This report demonstrates the elicitation effect on growth and stilbene accumulation in cell cultures of Cayratia trifolia (Vitaceae) by an extract of the angiosperm parasite Cuscuta reflexa and salicylic acid in combination with sucrose feeding. Cell cultures of C. trifolia, a tropical liana, were maintained in liquid Murashige and Skoog's basal medium containing 0.25 mg l−1 naphthalene acetic acid, 0.2 mg l−1 kinetin with 3% sucrose and 250 mg l−1 casein hydrolysate. The cells treated with Cuscuta elicitor showed increased polyphenol oxidase activity with increasing concentration of the elicitor, while total phenol content remained almost unchanged. Enhanced yield of stilbenes (∼8-fold) was recorded in the cells treated with 200 mg l−1 Cuscuta elicitor for 7 d. Optimum accumulation of stilbenes with a non-significant decrease in cell growth as compared with control was recorded with the addition of 3% sucrose on the seventh day of cell culture. Addition of 3% sucrose with salicylic acid at 500 μM and Cuscuta extract at 200 mg l−1 on the seventh day enhanced total stilbene yield up to 50.1 mg l−1, which was ∼14-fold higher than in control cultures. Piceid content increased ∼200-fold in such cultures.  相似文献   

9.
Fermentation of biomass derived synthesis gas to ethanol is a sustainable approach that can provide more usable energy and environmental benefits than food-based biofuels. The effects of various medium components on ethanol production by Clostridium ragsdalei utilizing syngas components (CO:CO2) were investigated, and corn steep liquor (CSL) was used as an inexpensive nutrient source for ethanol production by C. ragsdalei. Elimination of Mg2+, NH4 + and PO4 3− decreased ethanol production from 38 to 3.7, 23 and 5.93 mM, respectively. Eliminating Na+, Ca2+, and K+ or increasing Ca2+, Mg2+, K+, NH4 + and PO4 3− concentrations had no effect on ethanol production. However, increased Na+ concentration (171 mM) inhibited growth and ethanol production. Yeast extract (0.5 g l−1) and trace metals were necessary for growth of C. ragsdalei. CSL alone did not support growth and ethanol production. Nutrients limiting in CSL were trace metals, NH4 + and reducing agent (Cys: cysteine sulfide). Supplementation of trace metals, NH4 + and CyS to CSL (20 g l−1, wet weight basis) yielded better growth and similar ethanol production as compared to control medium. Using 10 g l−1, the nutritional limitation led to reduced ethanol production. Higher concentrations of CSL (50 and 100 g l−1) were inhibitory for cell growth and ethanol production. The CSL could replace yeast extract, vitamins and minerals (excluding NH4 +). The optimized CSL medium produced 120 and 50 mM of ethanol and acetate, respectively. The CSL could provide as an inexpensive source of most of the nutrients required for the syngas fermentation, and thus could improve the economics of ethanol production from biomass derived synthesis gas by C. ragsdalei.  相似文献   

10.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

11.
Calcium-activated chloride currents (CaCCs) are required for epithelial electrolyte and fluid secretion, fertilization, sensory transduction and excitability of neurons and smooth muscle. Defolliculated Xenopus oocytes express a robust CaCC formed by a heterologous group of proteins including transmembrane protein 16A (TMEM16A) and bestrophins. Penetratin, a 17-amino acid peptide, potentiated endogenous oocyte CaCCs by ~50-fold at 10 μM, recorded using a two-electrode voltage clamp. CaCC potentiation was rapid and dose-dependent (EC50 = 3.2 μM). Penetratin-potentiated currents reversed at −18 mV and were dependent on the extracellular divalent cations present, showing positive regulation by Ca2+ and Mg2+ but effective block by Zn2+ (IC50 = 5.9 μM). Extracellular Cd2+, Cu2+ and Ba2+ resulted in bimodal responses: CaCC inhibition at low but potentiation at high concentrations. Intracellular BAPTA injection, which prevents activation of CaCCs, and the Cl channel blockers niflumic acid and DIDS significantly reduced potentiation. In contrast, the K+ channel blockers Cs+, TEA, tertiapin-Q and halothane had no significant effect. This pharmacological profile is consistent with penetratin potentiation of zinc-sensitive CaCCs that are activated by influx of extracellular Ca2+. These findings may stimulate basic research on CaCCs in native cells and may lead to development of novel therapeutics targeting disorders caused by insufficient chloride secretion.  相似文献   

12.
Brush-border membrane vesicles (BBMV) were prepared from superficial rat renal cortex by a divalent2+-precipitation technique using either CaCl2 or MgCl2. The dependence of the initial [14C]-d-glucose (or [3H]-l-proline) uptake rate and the extent of the overshoot of d-glucose or l-proline uphill accumulation from solutions containing 100 mm Na+ salt, was found to be dependent upon the precipitating divalent cation. With Mg2+ precipitation the initial uptake and overshoot accumulation of either d-glucose or l-proline were enhanced compared to BBMV prepared by Ca2+ precipitation. When the anion composition of the media was varied (uptake in Cl media in comparison to gluconate-containing media) it was found that the Cl-dependent component of the initial uptake was markedly depressed with Ca2+-prepared BBMV (104.99 ± 33.31 vs. 13.83 ± 1.44 pmoles/sec/mg protein for Mg2+ and Ca2+ prepared vesicles respectively). When Ca2+ was loaded into Mg2+ prepared BBMV using a freeze-thaw technique, it was found that the magnitude and Cl enhancement of d-glucose transport was reduced in a dose-dependent manner. Neomycin, an inhibitor of phospholipase C, had no effect on the reduction of d-glucose uptake by Ca2+ in Mg2+ prepared vesicles. In contrast, phosphatase inhibitors such as vanadate and fluoride were able to partially reverse the Ca2+ inhibition of d-glucose uptake and restore the enhancement due to Cl media. In addition, inhibitors of protein phosphatase 2B, deltamethrin (50 nm) and trifluoperazine (10 μm), caused partial reversal of Ca2+-dependent inhibition of d-glucose uptake. Direct measurement of changes in the bi-ionic (Cl vs. gluconate) transmembrane electrical potential differences using the cyanine dye, 3,3′-dipropylthiodicarbocyanine iodide DiSC3-(5) confirmed that Cl conductance was reduced in Ca2+-prepared vesicles. We conclude that a Cl conductance coexists with Na+ cotransport in rat renal BBMV and this may be subject to negative regulation by Ca2+ via stimulation of protein phosphatase (PP2B). Received: 14 December 1994/Revised: 27 November 1995  相似文献   

13.
Guggulsterone, a hypolipidemic natural agent, is produced in resin canals of the plant Commiphora wightii. In this study, the stimulatory effects of growth retardants [ALAR (N,N-dimethylaminosuccinamic acid) and CCC (chlormequat chloride)] and fungal elicitor on guggulsterone accumulation in cell cultures of C. wightii are reported. CCC at 1 mg l−1 enhanced guggulsterone content (~123 μg l−1) when added on the fifth day after inoculation, while ALAR at 2.5 mg l−1 increased guggulsterone content (~116 μg l−1) when added on the tenth day. In a two-stage fed-batch process, combined treatment with fungal elicitor and growth retardant caused a significant increase (~353 μg l−1) in guggulsterone content in cell cultures after 17 days of growth. This represents an approximately fivefold increase over the guggulsterone contents in initial cultures of this plant.  相似文献   

14.
Wild populations of Fritillaria imperialis L. are facing extinction and need urgent conservation. This paper presents an efficient system for in vitro direct bulblet regeneration of these populations by petal culturing of flower buds. Petals at different developmental stages, green-closed flower bud (before nectar secretion) and red-closed flower bud (beginning of nectar secretion), were used as explants, and the effects of various proportions of cytokinin to auxin on direct bulblet regeneration pathway were evaluated. More explants switched on direct regeneration pathway in combination of auxins (0.6 mg l−1 NAA + 0.4 mg l−1 IAA) with higher level of cytokinin (1 mg l−1 BAP). In contrast, auxins (0.6 mg l−1 NAA + 0.4 mg l−1 IAA) with lower level of cytokinin (0.1 mg l−1 BAP) produced more bulblets per regenerated explant. In green-closed flower bud stage, direct bulblets regenerated from the end of petal where it was connected to the receptacle, while nectar secretion site was the place of bulblet formation in red-closed flower bud stage. In addition, genotype-dependency of direct bulblet regeneration pathway was investigated by using two different wild populations of Fritillaria imperialis. This plant regeneration procedure was applicable to different Fritillaria genotypes and regenerated bulblets were normal.  相似文献   

15.
Efficient Agrobacterium tumefaciens-mediated transformation and a higher recovery of transformed plants of cucumber cv. Poinsett76 were achieved via direct organogenesis from cotyledon explants. Stable transformants were obtained by inoculating explants with A. tumefaciens strains EHA105 or LBA4404, both harboring the binary vector pME508, which contains the neomycin phosphotransferase II (nptII) and phosphinothricin resistance genes (bar) conferring resistance to kanamycin and PPT, respectively, as selectable markers and the sgfp-tyg gene for the green fluorescent protein (GFP) as a visual marker driven by the constitutive CaMV35S promoter in the presence of acetosyringone (50 μM). Transformed shoots were obtained on MS Murashige and Skoog (Plant Physiol. 15: 473–497, 1962) medium supplemented with 1 mg L−1 benzyladenine (BA), 20 mg L−1 l-glutamine and 2 mg L−1 phosphinothricin (PPT) or 100 mg L−1 kanamycin. The regenerated shoots were examined in vivo using a hand-held long wave UV lamp for GFP expression. The GFP screening helped identify escapes and chimeric shoots at regular intervals to increase the growth of transformed shoots on cotyledon explants. Elongation and rooting of putative transformants were achieved on PPT (2 mg L−1) containing MS media with 0.5 mg L−1 gibberellic acid (GA3) and 0.6 mg L−1 indole butyric acid (IBA), respectively. PCR and Southern analyses confirmed the integration of the sgfp gene into the genome of T0 and the progenies. T1 segregation of transgenic progeny exhibited Mendelian inheritance of the transgene. The use of EHA105 resulted in 21% transformation efficiency compared to 8.5% when LBA4404 was used. This higher rate was greatly facilitated by PPT selection coupled with effective screening of transformants for GFP expression, thus making the protocol highly useful for the recovery of a higher number of transgenic cucumber plants.  相似文献   

16.
Direct genetic transformation of mesophyll protoplasts was studied in Pelargonium × hortorum. Calcein and green-fluorescent protein (GFP) gene were used to set up the process. Electroporation (three electric pulses from a 33-μF capacitor in a 250-V cm−1 electric field) was more efficient than PEG 6000 for membrane permeation, protoplast survival and cell division. Transient expression of GFP was detected in 33–36% of electroporated protoplasts after 2 days and further in colonies. A protoplast suspension conductivity of >1,500 μS cm−1 allowed high colony formation and plant regeneration. Stable transformation was obtained using the plasmid FAJ3000 containing uidA and nptII genes. When selection (50 mg l−1 kanamycin) was achieved 6 weeks after electroporation, regenerated shoots were able to grow and root on 100 mg l−1 kanamycin. The maximum transformation efficiency was 4.5%, based on the number of colonies producing kanamycin-resistant rooted plants or 0.7% based on the number of cultured protoplasts. Polymerase chain reaction (PCR) analysis on in vitro micropropagated plants showed that 18 clones out of 20 contained the nptII gene, while the uidA gene was absent. These results were confirmed after PCR analyses of five glasshouse-acclimatized clones.  相似文献   

17.
Under oxygen deprivation, aerobic Corynebacterium glutamicum produce organic acids from glucose at high yields in mineral medium even though their proliferation is arrested. To develop a new, high-productivity bioprocess based on these unique features, characteristics of organic acid production by C. glutamicum under oxygen deprivation were investigated. The main organic acids produced from glucose under these conditions were lactic acid and succinic acid. Addition of bicarbonate, which is a co-substrate for anaplerotic enzymes, increased the glucose consumption rate, leading to increased organic acid production rates. With increasing concentration of bicarbonate, the yield of succinic acid increased, whereas that of lactic acid decreased. There was a direct correlation between cell concentration and organic acid production rates even at elevated cell densities, and productivities of lactic acid and succinic acid were 42.9 g l−1 h−1 and 11.7 g l−1 h−1, respectively, at a cell concentration of 60 g dry cell l−1. This cell-recycling continuous reaction demonstrated that rates of organic acid production by C. glutamicum could be maintained for at least 360 h.  相似文献   

18.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

19.
Callus selection (CS) and the flamingo-bill explant (FB) methods were evaluated for efficacy in transformation for celery. Agrobacterium tumefaciens strains EHA105 and GV3101, each with the bar gene under the promoters NOS (pGPTV-BAR) or 35S (pDHB321.1), were used. Leaf explants were inoculated and co-cultivated for 2 d in the dark. Calluses emerged on the explants on callus medium (C), Murashige and Skoog (MS) medium + 2,4-Dichlorophenoxyacetic acid (2,4-D) (2.3 μM) + kinetin (2.8 μM) + timentin (300 mg·l−1). Calluses 4- to 6-wk-old were selected for glufosinate (GS) resistance by a two step method. First, calluses were transferred to C medium + GS 0.35, 0.5, 1, 2, 5, or 10 mg·l−1; calluses formed only with 0, 0.35 and 0.5 mg·l−1 GS. All growing calluses from 0 and 0.35 mg·l−1 and a few from 0.5 mg·l−1, were divided and placed back on C + GS 0.35–0.5 mg·l−1 for another 5–6 wk. Second, tolerant clones were again divided and placed on C + GS 1–50 mg·l−1. When cultivar XP85 was inoculated with both strains, using pGPTVBAR, 19 glufosinate resistant (GR) callus clones were selected, but shoots regenerated only for strain EHA105 inoculations. When both of the strains (each with pDHB321.1) were inoculated on cv. XP166, 3 and 12 GR calluses occurred for EHA105 and GV3101, respectively. Using CS, a total of 34 GR callus clones were selected, and shoots were regenerated from over 50% of them on Gamborg B5 medium + 6-(γ, γ-dimethylallylamino) purine 2ip (4.9 μM) + naphthaleneacetic acid (NAA; 1.6 μM) and rooted on MS in 5–6 mo total time. Conversely, using FB with inoculation by GV3101/pDHB321.1 on cv. XP166 yielded putative transgenic celery plants confirmed by polymerase chain reaction (PCR) in just 6 wk. Transformation of the bar gene into celery was confirmed by PCR for 5 and 6 CS and FB lines, respectively. Southern blot analyses indicated 1–2 copies in CS lines and 1 copy in FB lines. Herbicide assays on whole plants with 100 and 300 mg·l−1 glufosinate indicated a range of low to high tolerance for lines derived by both methods. The bar gene was found to be Mendelian inherited in one self-fertile CS derived line.  相似文献   

20.
In this study, the effects of citrate addition on d-ribose production were investigated in batch culture of a transketolase-deficient strain, Bacillus subtilis EC2, in shake flasks and bioreactors. Batch cultures in shake flasks and a 5-l reactor indicated that supplementation with 0.2–0.5 g l−1 of citrate enhanced d-ribose production. When B. subtilis EC2 was cultivated in a 15-l reactor in a complex medium, the d-ribose concentration was 70.9 g l−1 with a ribose yield of 0.497 mol mol−1. When this strain was grown in the same medium supplemented with 0.3 g l−1 of citrate, 83.4 g l−1 of d-ribose were obtained, and the ribose yield was increased to 0.587 mol mol−1. Addition of citrate reduced the activities of pyruvate kinase and phosphofructokinase, while it increased those of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Metabolic flux distribution in the stationary phase indicated that citrate addition resulted in increased fluxes in the pentose phosphate pathway and TCA cycle, and decreased fluxes in the glycolysis and acetate pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号