首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of ammonia to nitrite by bacteria and archaea is responsible for global emissions of nitrous oxide directly and indirectly through provision of nitrite and, after further oxidation, nitrate to denitrifiers. Their contributions to increasing N2O emissions are greatest in terrestrial environments, due to the dramatic and continuing increases in use of ammonia‐based fertilizers, which have been driven by requirement for increased food production, but which also provide a source of energy for ammonia oxidizers (AO), leading to an imbalance in the terrestrial nitrogen cycle. Direct N2O production by AO results from several metabolic processes, sometimes combined with abiotic reactions. Physiological characteristics, including mechanisms for N2O production, vary within and between ammonia‐oxidizing archaea (AOA) and bacteria (AOB) and comammox bacteria and N2O yield of AOB is higher than in the other two groups. There is also strong evidence for niche differentiation between AOA and AOB with respect to environmental conditions in natural and engineered environments. In particular, AOA are favored by low soil pH and AOA and AOB are, respectively, favored by low rates of ammonium supply, equivalent to application of slow‐release fertilizer, or high rates of supply, equivalent to addition of high concentrations of inorganic ammonium or urea. These differences between AOA and AOB provide the potential for better fertilization strategies that could both increase fertilizer use efficiency and reduce N2O emissions from agricultural soils. This article reviews research on the biochemistry, physiology and ecology of AO and discusses the consequences for AO communities subjected to different agricultural practices and the ways in which this knowledge, coupled with improved methods for characterizing communities, might lead to improved fertilizer use efficiency and mitigation of N2O emissions.  相似文献   

2.
The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, 15N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and forest soil (pH 5.4) and was inhibited by acetylene. Nitrification activity was significantly stimulated by urea fertilization and coupled well with abundance changes in archaeal amoA genes in acidic soils. Pyrosequencing of 16S rRNA genes at whole microbial community level demonstrates the active growth of AOA in urea-amended soils. Molecular fingerprinting further shows that changes in denaturing gradient gel electrophoresis fingerprint patterns of archaeal amoA genes are paralleled by nitrification activity changes. However, bacterial amoA and 16S rRNA genes of AOB were not detected. The results strongly suggest that archaeal ammonia oxidation is supported by hydrolysis of urea and that AOA, from the marine Group 1.1a-associated lineage, dominate nitrification in two acidic soils tested.  相似文献   

3.
The metabolic traits of ammonia‐oxidizing archaea (AOA) and bacteria (AOB) interacting with their environment determine the nitrogen cycle at the global scale. Ureolytic metabolism has long been proposed as a mechanism for AOB to cope with substrate paucity in acid soil, but it remains unclear whether urea hydrolysis could afford AOA greater ecological advantages. By combining DNA‐based stable isotope probing (SIP) and high‐throughput pyrosequencing, here we show that autotrophic ammonia oxidation in two acid soils was predominately driven by AOA that contain ureC genes encoding the alpha subunit of a putative archaeal urease. In urea‐amended SIP microcosms of forest soil (pH 5.40) and tea orchard soil (pH 3.75), nitrification activity was stimulated significantly by urea fertilization when compared with water‐amended soils in which nitrification resulted solely from the oxidation of ammonia generated through mineralization of soil organic nitrogen. The stimulated activity was paralleled by changes in abundance and composition of archaeal amoA genes. Time‐course incubations indicated that archaeal amoA genes were increasingly labelled by 13CO2 in both microcosms amended with water and urea. Pyrosequencing revealed that archaeal populations were labelled to a much greater extent in soils amended with urea than water. Furthermore, archaeal ureC genes were successfully amplified in the 13C‐DNA, and acetylene inhibition suggests that autotrophic growth of urease‐containing AOA depended on energy generation through ammonia oxidation. The sequences of AOB were not detected, and active AOA were affiliated with the marine Group 1.1a‐associated lineage. The results suggest that ureolytic N metabolism could afford AOA greater advantages for autotrophic ammonia oxidation in acid soil, but the mechanism of how urea activates AOA cells remains unclear.  相似文献   

4.
不同包膜控释尿素对农田土壤氨挥发的影响   总被引:13,自引:0,他引:13  
卢艳艳  宋付朋 《生态学报》2011,31(23):7133-7140
为了探索包膜控释尿素土壤氨挥发损失规律特征和提高肥料氮素利用率,采用小麦玉米轮作田间试验,通过与普通尿素进行对比,运用土壤氨挥发原位测定方法——通气法系统研究了硫包膜和树脂包膜控释尿素的施用对小麦玉米轮作农田土壤氨挥发的影响.研究结果表明:在两种施氮量水平下(210 kg/hm2和300 kg/hm2),与普通尿素相比,硫包膜和树脂包膜控释尿素在小麦基肥期、小麦追肥期和玉米施肥期的施用均减少了土壤氨挥发的累积损失量,分别达35.1%-54.3%、59.6%-75.2%、65.6%-98.1%;有效降低了土壤氨挥发通量峰值且延迟其出现时间3-8 d,并能延缓土壤氨挥发主要阶段的时间分别为4-12 d、5-12 d.在小麦玉米轮作周年中,控释尿素土壤氨挥发累积损失量为28.39-43.35 kg/hm2,土壤氨挥发损失率为4.48%-5.63%,控释尿素时段土壤氨挥发通量比普通尿素降低了51.0%-70.8%;且树脂包膜控释尿素的施用降低小麦玉米轮作农田土壤氨挥发的效果优于硫包膜控释尿素.  相似文献   

5.
Leaching of nitrate (NO3 ) below the root zone and gaseous losses of nitrogen (N) such as ammonia (NH3) volatilization, are major mechanisms of N loss from agricultural soils. New techniques to minimize such losses are needed to maximize N uptake efficiency and minimize production costs and the risk of potential N contamination of ground and surface waters. The effects of cellulose (C), clinoptilolite zeolite (CZ), or a combination of both (C+CZ) on NH3 volatilization and N transformation in a calcareous Riviera fine sand (loamy, siliceous, hyperthermic, Arenic Glossaqualf) from a citrus grove were investigated in a laboratory incubation study. Ammonia volatilization from NH4NO3 (AN), (NH4)2SO4(AS), and urea (U) applied at 200 mg N kg–1 soil decreased by 2.5-, 2.1- and 0.9-fold, respectively, with cellulose application at 15 g kg–1 and by 4.4-, 2.9- and 3.0-fold, respectively, with CZ application at 15 g kg–1 as compared with that from the respective sources without the amendments. Application of cellulose plus CZ (each at 15 g kg–1) was the most effective in decreasing NH3 volatilization. Application of cellulose increased the microbial biomass, which was responsible for immobilization of N, and thus decreased volatilization loss of NH3–N. The effect of CZ, on the other hand, may be due to increased retention of NH4 in the ion-exchange sites. The positive effect of interaction between cellulose and CZ amendment on microbial biomass was probably due to improved nutrient retention and availability to microorganisms in the soil. Thus, the amendments provide favorable conditions for microbial growth. These results indicate that soil amendment of CZ or CZ plus organic materials such as cellulose has great potential in reducing fertilizer N loss in sandy soils.  相似文献   

6.
The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m?1, pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m?1, pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m?1, pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m?1, pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg?1 dry soil day?1, respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg?1 dry soil day?1, respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected.  相似文献   

7.
Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3-N g−1 dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in 13C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of 13CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the 13C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The 13C-NOB was overwhelmingly dominated by Nitrospira rather than Nitrobacter. A significant correlation was observed between the active AOA/AOB ratio and the soil oxidation capacity, implying a greater advantage of AOA over AOB under microaerophilic conditions. These results suggest the important roles of soil physiochemical properties in determining the activities of ammonia oxidizers and nitrite oxidizers.  相似文献   

8.
Agricultural activities have greatly altered the global nitrogen (N) cycle and produced nitrogenous gases of environmental significance. More than half of all chemical N fertilizer produced globally is used in crop production in East, Southeast and South Asia, where rice is central to nutrition. Emissions of nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) from croplands in this region were estimated by considering background emission and emissions resulting from N added to croplands, including chemical N, animal manure, biologically fixed N and N in crop residues returned to fields. Background emission fluxes of N2O and NO from croplands were estimated to be 1.22 and 0.57 kg N ha?1 yr?1, respectively. Separate fertilizer‐induced emission factors were estimated for upland fields and rice fields. Total N2O emission from croplands in the study region was estimated to be 1.19 Tg N yr?1, with 43% contributed by background emissions. The average fertilizer‐induced N2O emission, however, accounts for only 0.93% of the applied N, which is less than the default IPCC value of 1.25%, because of the low emission factor from paddy fields. Total NO emission was 591 Gg N yr?1 in the study region, with 40% from background emissions. The average fertilizer‐induced NO emission factor was 0.48%. Total NH3 emission was estimated to be 11.8 Tg N yr?1. The use of urea and ammonium bicarbonate and the cultivation of rice led to a high average NH3 loss rate from chemical N fertilizer in the study region. Emissions were displayed at a 0.5° × 0.5° resolution with the use of a global landuse database.  相似文献   

9.
Ammonia volatilization is the major pathway for mineral nitrogen loss in the calcareous soils of the Chinese loess plateau, with maximum losses reaching 50% of the fertilizer-N applied. A volatilization-diffusion experiment was carried out in the laboratory using a forced-draft system and soil columns of 15.5 cm depth. Urea was surface applied at rates of 210 kg N ha-1 to a soil with 10% CaCO3 and a pH of 7.7. The amount of ammonia volatilized as well as the concentration profiles of ammoniacal-nitrogen and soil pH in the upper 50 mm of the soil columns after 4, 7 and 10 days were measured and subsequently modelled. The mechanistic model of Rachhpal-Singh and Nye, originally developed for neutral, non-calcareous soils, was modified to include the pH-buffering action of the soil carbonates. Model parameters were independently determined or taken from the literature. Measured and predicted cumulative NH3 losses agreed very well in the first 10 days following fertilizer application. However, in contrast to the simulations, NH3-volatilization was still proceeding in the experiment even after 13 days, with cumulative losses reaching 60% of the applied N. In addition to the high initial soil pH, the low bulk density and high volumetric air content of the soil columns used for the experiment proved decisive for the high rates of ammonia volatilization, provoking a strong increase in the amount of ammoniacal-N diffusing towards the soil surface as gaseous NH3. The simulations showed that due to the high soil pH, the buffering action of the soil carbonates played a comparatively smaller role.  相似文献   

10.
Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH ≤ 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79–97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms.  相似文献   

11.
To achieve stable partial nitrification, activated sludge from a wastewater treatment plant using free ammonia (FA) inhibition was immobilized in a polyvinyl alcohol carrier. After FA treatment at 16.44 mg L−1 for 1 day, due to the increased growth rate gap between ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), AOB enrichment and NOB inhibition were achieved within 12 days, with AOB and NOB accounting for 65.61 and 0.05%, respectively. Subsequently, with dissolved oxygen concentrations of 4−5 mg L−1, pH of 7.6–7.8 and temperature of 25 ± 1 °C, the immobilized carrier made of activated sludge achieved more than 90% and more than 86% of nitrite accumulation rate at the influent ammonia concentration of 90−110 mg L−1 and 35−50 mg L−1, respectively. After 50 days operation, the NOB content was 0.10%, indicating the immobilized carrier provided favorable conditions for maintaining the low NOB content. Furthermore, due to the low NOB content in the inoculum and the oxygen-limited environment formed by the increase in the AOB numbers in the carrier, immobilized carrier with different initial biomass (1, 2.5 and 5%) can achieve stable partial nitrification.  相似文献   

12.
13.
Nitrous oxide emissions from a cropped soil in a semi-arid climate   总被引:5,自引:0,他引:5  
Understanding nitrous oxide (N2O) emissions from agricultural soils in semi‐arid regions is required to better understand global terrestrial N2O losses. Nitrous oxide emissions were measured from a rain‐fed, cropped soil in a semi‐arid region of south‐western Australia for one year on a sub‐daily basis. The site included N‐fertilized (100 kg N ha?1 yr?1) and nonfertilized plots. Emissions were measured using soil chambers connected to a fully automated system that measured N2O using gas chromatography. Daily N2O emissions were low (?1.8 to 7.3 g N2O‐N ha?1 day?1) and culminated in an annual loss of 0.11 kg N2O‐N ha?1 from N‐fertilized soil and 0.09 kg N2O‐N ha?1 from nonfertilized soil. Over half (55%) the annual N2O emission occurred from both N treatments when the soil was fallow, following a series of summer rainfall events. At this time of the year, conditions were conducive for soil microbial N2O production: elevated soil water content, available N, soil temperatures generally >25 °C and no active plant growth. The proportion of N fertilizer emitted as N2O in 1 year, after correction for the ‘background’ emission (no N fertilizer applied), was 0.02%. The emission factor reported in this study was 60 times lower than the IPCC default value for the application of synthetic fertilizers to land (1.25%), suggesting that the default may not be suitable for cropped soils in semi‐arid regions. Applying N fertilizer did not significantly increase the annual N2O emission, demonstrating that a proportion of N2O emitted from agricultural soils may not be directly derived from the application of N fertilizer. ‘Background’ emissions, resulting from other agricultural practices, need to be accounted for if we are to fully assess the impact of agriculture in semi‐arid regions on global terrestrial N2O emissions.  相似文献   

14.
Nitrite (NO2) can accumulate during nitrification in soil following fertilizer application. While the role of NO2 as a substrate regulating nitrous oxide (N2O) production is recognized, kinetic data are not available that allow for estimating N2O production or soil‐to‐atmosphere fluxes as a function of NO2 levels under aerobic conditions. The current study investigated these kinetics as influenced by soil physical and biochemical factors in soils from cultivated and uncultivated fields in Minnesota, USA. A linear response of N2O production rate () to NO2 was observed at concentrations below 60 μg N g−1 soil in both nonsterile and sterilized soils. Rate coefficients (Kp) relating to NO2 varied over two orders of magnitude and were correlated with pH, total nitrogen, and soluble and total carbon (C). Total C explained 84% of the variance in Kp across all samples. Abiotic processes accounted for 31–75% of total N2O production. Biological reduction of NO2 was enhanced as oxygen (O2) levels were decreased from above ambient to 5%, consistent with nitrifier denitrification. In contrast, nitrate (NO3)‐reduction, and the reduction of N2O itself, were only stimulated at O2 levels below 5%. Greater temperature sensitivity was observed for biological compared with chemical N2O production. Steady‐state model simulations predict that NO2 levels often found after fertilizer applications have the potential to generate substantial N2O fluxes even at ambient O2. This potential derives in part from the production of N2O under conditions not favorable for N2O reduction, in contrast to N2O generated from NO3 reduction. These results have implications with regard to improved management to minimize agricultural N2O emissions and improved emissions assessments.  相似文献   

15.

Aims

To investigate community shifts of amoA‐encoding archaea (AEA) and ammonia‐oxidizing bacteria (AOB) in biofilter under nitrogen accumulation process.

Methods and Results

A laboratory‐scale rockwool biofilter with an irrigated water circulation system was operated for 436 days with ammonia loading rates of 49–63 NH3 g m?3 day?1. The AEA and AOB communities were investigated by denaturing gradient gel electrophoresis, sequencing and real‐time PCR analysis based on amoA genes. The results indicated that changes in abundance and community compositions occurred in a different manner between archaeal and bacterial amoA during the operation. However, both microbial community structures mainly varied when free ammonia (FA) concentrations in circulation water were increasing, which caused a temporal decline in reactor performance. Dominant amoA sequences after this transition were related to Thaumarchaeotal Group I.1b, Nitrosomonas europaea lineages and one subcluster within Nitrosospira sp. cluster 3, for archaea and bacteria, respectively.

Conclusions

The specific FA in circulation water seems to be the important factor, which relates to the AOB and AEA community shifts in the biofilter besides ammonium and pH.

Significance and Impact of the Study

One of the key factors for regulating AEA and AOB communities was proposed that is useful for optimizing biofiltration technology.  相似文献   

16.
Agricultural ecosystems annually receive approximately 25% of the global nitrogen input, much of which is oxidized at least once by ammonia-oxidizing prokaryotes to complete the nitrogen cycle. Recent discoveries have expanded the known ammonia-oxidizing prokaryotes from the domain Bacteria to Archaea . However, in the complex soil environment it remains unclear whether ammonia oxidation is exclusively or predominantly linked to Archaea as implied by their exceptionally high abundance. Here we show that Bacteria rather than Archaea functionally dominate ammonia oxidation in an agricultural soil, despite the fact that archaeal versus bacterial amoA genes are numerically more dominant. In soil microcosms, in which ammonia oxidation was stimulated by ammonium and inhibited by acetylene, activity change was paralleled by abundance change of bacterial but not of archaeal amoA gene copy numbers. Molecular fingerprinting of amoA genes also coupled ammonia oxidation activity with bacterial but not archaeal amoA gene patterns. DNA-stable isotope probing demonstrated CO2 assimilation by Bacteria rather than Archaea . Our results indicate that Archaea were not important for ammonia oxidation in the agricultural soil tested.  相似文献   

17.
A newly isolated heterotrophic marine bacterium,Vibrio alginolyticus, was used to remove a high load of ammonia gas under non-sterile condition. The cells were inoculated onto an inorganic packing material in a fixed-bed reactor (biofilter), and a high bad of ammonia, in the range of ammonia gas concentration of 170 ppm to 880 ppm, was introduced continuously. Sucrose solution and 3% NaCl was supplied intermittently to supplement the carbon source and water to the biofilter. The average percentage of gas removed exceeded 85% for 107-day operation. The maximum removal capacity and the complete removal capacity were 19 g-N kg−1 dry packing material day−1 and 16 g-N kg−1 dry packing material day−1, respectively, which were about three times greater than those obtained in nitrifying sludge inoculated onto the same packing material. On day 82, the enhanced pressure drop was restored to the normal one by NaOH treatment, and efficient removal characteristics were later observed. During this operation, the non-sterile condition had no significantly adverse effect on the removability of ammonia byV. alginolyticus.  相似文献   

18.
The study was conducted on six sites that are dominated by Japanese knotweed (Reynoutria japonica) and that vary in the level of industrialization and habitat transformation by humans. The aim of the research was to investigate the chemical-physical features of soil under a closed and dense canopy of R. japonica, the chemical composition of the R. japonica leaves, and to compare the content of certain elements in the soil-plant-soil system. The soil organic carbon (Corg) content varied from 1.38±0.004% to 8.2±0.047% and the maximum in leaves was 49.11±0.090%. The lowest levels of total nitrogen (Ntot) in soil were recorded on the heavily disturbed sites (till 0.227±0.021%). Soil pH varied greatly, ranging from acidic (pH=4.0) to neutral (pH=7.7). Heavy metal content differed significantly among the study sites. At all of the sites, both in the case of soil and plant leaves, Zn was a dominant element and its concentration ranged from 41.5 to 501.2 mg·kg?1 in soils and from 38.6 to 541.7 mg·kg?1 in leaves. Maximum accumulations of P (2103.3±15.3 mg·kg?1) and S (2571.7±17.6 mg·kg?1) were observed on the site that had been influenced by agricultural practices. The results obtained showed that R. japonica is able to accumulate high levels of heavy metals.  相似文献   

19.
Air-side stripping without a prior solid–liquid phase separation step is a feasible and promising process to control ammonia concentration in thermophilic digesters. During the process, part of the anaerobic biomass is exposed to high temperature, high pH and aerobic conditions. However, there are no studies assessing the effects of those harsh conditions on the microbial communities of thermophilic digesters. To fill this knowledge gap, the microbiomes of two thermophilic digesters (55°C), fed with a mixture of pig manure and nitrogen-rich co-substrates, were investigated under different organic loading rates (OLR: 1.1–5.2 g COD l−1 day−1), ammonia concentrations (0.2–1.5 g free ammonia nitrogen l−1) and stripping frequencies (3–5 times per week). The bacterial communities were dominated by Firmicutes and Bacteroidetes phyla, while the predominant methanogens were Methanosarcina sp archaea. Increasing co-substrate fraction, OLR and free ammonia nitrogen (FAN) favoured the presence of genera Ruminiclostridium, Clostridium and Tepidimicrobium and of hydrogenotrophic methanogens, mainly Methanoculleus archaea. The data indicated that the use of air-side stripping did not adversely affect thermophilic microbial communities, but indirectly modulated them by controlling FAN concentrations in the digester. These results demonstrate the viability at microbial community level of air side-stream stripping process as an adequate technology for the ammonia control during anaerobic co-digestion of nitrogen-rich substrates.  相似文献   

20.
Aim: To measure the sanitizing effect of mesophilic (37°C) anaerobic digestion in high ammonia concentrations produced in situ. Methods and Results: Indicator organisms and salmonella were transferred to small‐scale anaerobic batch cultures and D‐values were calculated. Batch cultures were started with material from two biogas processes operating at high (46 mmol l?1) and low (1·6 mmol l?1) ammonia concentration. D‐values were shortened from c. 3 days to <1 day for the bacteria. MS2 had the same D‐value (1·3 days) independent of ammonia concentration whereas ΦX174 and 28B were faster inactivated in the control (1·1 and 7·9 days) than in the high ammonia (8·9 and 39 days) batch cultures. Conclusion: Running biogas processes at high levels of ammonia shortens the time to meet EU regulation concerning reduction of salmonella and enterococci (5 log). Unless a minimum retention time of 2 days, post‐treatment digestion is needed to achieve sufficient sanitation in continuous biogas processes. Significance and Impact of the Study: Running mesophilic biogas processes at high ammonia level produces residue with a high fertilizer value. With some stipulations concerning management parameters, such processes provide a method of bacterial sanitation without preceding pasteurization of the incoming organic waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号