首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】明确三峡库区消落带周期性淹水-落干对土壤硝化过程及功能微生物的影响。【方法】在重庆段万州、丰都和长寿3个典型消落带区域,分别采集淹水-落干8次、淹水-落干5次、淹水-落干0次土壤样品,通过室内培养分析土壤硝化作用强度;利用实时荧光定量PCR研究不同淹水-落干周期土壤氨氧化古菌和细菌的数量变化规律;采用DGGE分子指纹图谱和克隆文库技术研究土壤氨氧化古菌和细菌的群落组成差异。【结果】万州、丰都和长寿3个消落带中,土壤有机质和pH含量随淹水-落干次数的增加而增加;除长寿消落带外,土壤硝化强度也随着淹水-落干次数的增加而增强;随着硝化作用的发生,氨氧化古菌和细菌数量呈上升趋势,DGGE条带数量、位置和亮度均发生明显变化;氨氧化功能基因amoA的系统发育分析表明:万州和丰都消落带氨氧化古菌均属于土壤类古菌Group 1.1b;而长寿消落带则检测到少量的海洋类古菌Group 1.1a;3个消落带的优势氨氧化细菌均属于Nitrosospira和Cluster 0类群。【结论】三峡库区独特的"冬蓄夏泄"管理方式,导致淹水-落干8次的土壤经历了周期性的淹水-落干水分胁迫,提升了土壤有机质含量和pH,增加了土壤硝化作用强度,并可能改变了土壤硝化微生物群落结构。  相似文献   

2.
Autotrophic growth of nitrifying community in an agricultural soil   总被引:8,自引:0,他引:8  
The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13CO2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the 13C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that 13CO2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested.  相似文献   

3.
The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, 15N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and forest soil (pH 5.4) and was inhibited by acetylene. Nitrification activity was significantly stimulated by urea fertilization and coupled well with abundance changes in archaeal amoA genes in acidic soils. Pyrosequencing of 16S rRNA genes at whole microbial community level demonstrates the active growth of AOA in urea-amended soils. Molecular fingerprinting further shows that changes in denaturing gradient gel electrophoresis fingerprint patterns of archaeal amoA genes are paralleled by nitrification activity changes. However, bacterial amoA and 16S rRNA genes of AOB were not detected. The results strongly suggest that archaeal ammonia oxidation is supported by hydrolysis of urea and that AOA, from the marine Group 1.1a-associated lineage, dominate nitrification in two acidic soils tested.  相似文献   

4.
Ammonium/ammonia is the sole energy substrate of ammonia oxidizers, and is also an essential nitrogen source for other microorganisms. Ammonia oxidizers therefore must compete with other soil microorganisms such as methane-oxidizing bacteria (MOB) in terrestrial ecosystems when ammonium concentrations are limiting. Here we report on the interactions between nitrifying communities dominated by ammonia-oxidizing archaea (AOA) and Nitrospira-like nitrite-oxidizing bacteria (NOB), and communities of MOB in controlled microcosm experiments with two levels of ammonium and methane availability. We observed strong stimulatory effects of elevated ammonium concentration on the processes of nitrification and methane oxidation as well as on the abundances of autotrophically growing nitrifiers. However, the key players in nitrification and methane oxidation, identified by stable-isotope labeling using 13CO2 and 13CH4, were the same under both ammonium levels, namely type 1.1a AOA, sublineage I and II Nitrospira-like NOB and Methylomicrobium-/Methylosarcina-like MOB, respectively. Ammonia-oxidizing bacteria were nearly absent, and ammonia oxidation could almost exclusively be attributed to AOA. Interestingly, although AOA functional gene abundance increased 10-fold during incubation, there was very limited evidence of autotrophic growth, suggesting a partly mixotrophic lifestyle. Furthermore, autotrophic growth of AOA and NOB was inhibited by active MOB at both ammonium levels. Our results suggest the existence of a previously overlooked competition for nitrogen between nitrifiers and methane oxidizers in soil, thus linking two of the most important biogeochemical cycles in nature.  相似文献   

5.
This study investigated the effect of municipal solid waste (MSW) compost (0, 50, and 100 t/ha) on N cycling and the microorganisms involved in it, in a clay-loam soil. After a release of nitrates (NO3 ?-N) in the first 6 days after compost incorporation, soil NO3 ?-N content remained constant in all the treatments until day?62, suggesting N immobilization induced by the soil used in this study. Then, soil NO3 ?-N content increased in all treatments and especially in the highest compost dose, providing evidence that immobilization effect has been at least partially relieved. amoA gene copies of ammonia-oxidizing archaea (AOA) and bacteria (AOB) followed the overall pattern of soil NO3 ?-N content; however, no differences were found in amoA gene copies among treatments, except in the last sampling, an effect attributed to the slight differences in the potential nitrification rate among them. Ammonia oxidizer pattern provided evidence that both groups were involved in ammonia oxidation and changes in their abundance can be used as ‘indicator’ to predict changes in soil nitrification status. Moreover, the strong correlation between AOA and AOB amoA copies (R 2?=?0.94) and the high slope (13) of the curve suggest that AOA had probably an important role on ammonia oxidation. Denitrifying genes (nirS, nirK, nosZ) also followed the general pattern of soil NO3 ?-N, and they were strongly correlated with both groups of ammonia oxidizers, and particularly AOA, suggesting strong interrelationships among them. Losses of N through denitrification, as they were estimated by total nitrogen, were inversely related to soil NO3 ?-N content. Similar to ammonia oxidizers, denitrifying gene copies did not differ among compost treatments an effect that could be probably explained by the low availability of organic-C in the MSW compost and hence the competition with aerobic heterotrophs.  相似文献   

6.
Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13CO2-DNA-stable isotope probing results showed significant assimilation of 13C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13CO2-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.  相似文献   

7.
8.
Microorganisms mediating ammonia oxidation play a fundamental role in the connection between biological nitrogen fixation and anaerobic nitrogen losses. Bacteria and Archaea ammonia oxidizers (AOB and AOA, respectively) have colonized similar habitats worldwide. Ammonia oxidation is the rate-limiting step in nitrification, and the ammonia monooxygenase (Amo) is the key enzyme involved. The molecular ecology of this process has been extensively explored by surveying the gene of the subunit A of the Amo (amoA gene). In the present study, we explored the phylogenetic community ecology of AOB and AOA, analyzing 5776 amoA gene sequences from >300 isolation sources, and clustering habitats by environmental ontologies. As a whole, phylogenetic richness was larger in AOA than in AOB, and sediments contained the highest phylogenetic richness whereas marine plankton the lowest. We also observed that freshwater ammonia oxidizers were phylogenetically richer than their marine counterparts. AOA communities were more dissimilar to each other than those of AOB, and consistent monophyletic lineages were observed for sediments, soils, and marine plankton in AOA but not in AOB. The diversification patterns showed a more constant cladogenesis through time for AOB whereas AOA apparently experienced two fast diversification events separated by a long steady-state episode. The diversification rate (γ statistic) for most of the habitats indicated γAOA > γAOB. Soil and sediment experienced earlier bursts of diversification whereas habitats usually eutrophic and rich in ammonium such as wastewater and sludge showed accelerated diversification rates towards the present. Overall, this work shows for the first time a global picture of the phylogenetic community structure of both AOB and AOA assemblages following the strictest analytical standards, and provides an ecological view on the differential evolutionary paths experienced by widespread ammonia-oxidizing microorganisms. The emerged picture of AOB and AOA distribution in different habitats provides a new view to understand the ecophysiology of ammonia oxidizers on Earth.  相似文献   

9.
Inhibitory experiments were conducted to investigate the responses of the population sizes of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and the potential nitrification rates (PNRs) to Cu contamination in four Chinese soils. PNR was determined using a substrate-induced nitrification (SIN) assay, and the population size of the nitrifiers represented by amoA gene abundances was quantified using a real-time polymerase chain reaction (qPCR) assay. Both population size and PNR of the ammonia oxidizers reduced considerably at high Cu concentrations in all the soils. Bacterial amoA gene abundance was reduced by from 107-fold (Hailun soil) to more than 232-fold (Hangzhou soil) at the highest Cu concentrations (2,400 mg kg?1 Cu for Hailun, Langfang and Guangzhou soils and 1,600 mg kg?1 Cu for Hangzhou soil), while reduction in archaeal amoA gene abundance was from 10-fold (Langfang soil) to 89-fold (Hangzhou soil). AOA seemed more tolerant to Cu contamination than AOB. Nitrification rates were inhibited by more than 50% at a Cu concentration of 600 mg kg?1, and by more than 90% at the highest Cu concentrations in all soils. These results indicated that both AOA and AOB can be inhibited by toxic metals, highlighting the need to consider the role of AOA in nitrification in soils.  相似文献   

10.
11.
The metabolic traits of ammonia‐oxidizing archaea (AOA) and bacteria (AOB) interacting with their environment determine the nitrogen cycle at the global scale. Ureolytic metabolism has long been proposed as a mechanism for AOB to cope with substrate paucity in acid soil, but it remains unclear whether urea hydrolysis could afford AOA greater ecological advantages. By combining DNA‐based stable isotope probing (SIP) and high‐throughput pyrosequencing, here we show that autotrophic ammonia oxidation in two acid soils was predominately driven by AOA that contain ureC genes encoding the alpha subunit of a putative archaeal urease. In urea‐amended SIP microcosms of forest soil (pH 5.40) and tea orchard soil (pH 3.75), nitrification activity was stimulated significantly by urea fertilization when compared with water‐amended soils in which nitrification resulted solely from the oxidation of ammonia generated through mineralization of soil organic nitrogen. The stimulated activity was paralleled by changes in abundance and composition of archaeal amoA genes. Time‐course incubations indicated that archaeal amoA genes were increasingly labelled by 13CO2 in both microcosms amended with water and urea. Pyrosequencing revealed that archaeal populations were labelled to a much greater extent in soils amended with urea than water. Furthermore, archaeal ureC genes were successfully amplified in the 13C‐DNA, and acetylene inhibition suggests that autotrophic growth of urease‐containing AOA depended on energy generation through ammonia oxidation. The sequences of AOB were not detected, and active AOA were affiliated with the marine Group 1.1a‐associated lineage. The results suggest that ureolytic N metabolism could afford AOA greater advantages for autotrophic ammonia oxidation in acid soil, but the mechanism of how urea activates AOA cells remains unclear.  相似文献   

12.
The functioning of Arctic soil ecosystems is crucially important for global climate, and basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and its availability is strongly dependent on nitrification. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils were analyzed through a polyphasic approach, integrating determination of gross nitrification rates, qualitative and quantitative marker gene analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils and outnumbered AOB in four of the remaining six soils. The AOA identified showed great phylogenetic diversity and a multifactorial association with the soil properties, reflecting an overall distribution associated with tundra type and with several physico-chemical parameters combined. Remarkably, the different gross nitrification rates between soils were associated with five distinct AOA clades, representing the great majority of known AOA diversity in soils, which suggests differences in their nitrifying potential. This was supported by selective enrichment of two of these clades in cultures with different NH3 oxidation rates. In addition, the enrichments provided the first direct evidence for NH3 oxidation by an AOA from an uncharacterized Thaumarchaeota–AOA lineage. Our results indicate that AOA are functionally heterogeneous and that the selection of distinct AOA populations by the environment can be a determinant for nitrification activity and N availability in soils.  相似文献   

13.
Forest fertilization in British Columbia is increasing, to alleviate timber shortfalls resulting from the mountain pine beetle epidemic. However, fertilization effects on soil microbial communities, and consequently ecosystem processes, are poorly understood. Fertilization has contrasting effects on ammonia-oxidizing bacteria and archaea (AOB and AOA) in grassland and agricultural ecosystems, but there are no studies on AOB and AOA in forests. We assessed the effect of periodic (6-yearly application 200 kg N ha?1) and annual (c. 75 kg N ha?1) fertilization of lodgepole pine and spruce stands at five long-term maximum productivity sites on potential nitrification (PN), and the abundance and diversity of AOB, AOA and Nitrobacter and Nitrospira-like nitrite-oxidizing bacteria (NOB). Fertilization increased AOB and Nitrobacter-like NOB abundances at some sites, but did not influence AOA and Nitrospira-like NOB abundances. AOB and Nitrobacter-like NOB abundances were correlated with PN and soil nitrate concentration; no such correlations were observed for AOA and Nitrospira-like NOB. Autotrophic nitrification dominated (55–97%) in these forests and PN rates were enhanced for up to 2 years following periodic fertilization. More changes in community composition between control and fertilized plots were observed for AOB and Nitrobacter-like NOB than AOA. We conclude that fertilization causes rapid shifts in the structure of AOB and Nitrobacter-like NOB communities that dominate nitrification in these forests.  相似文献   

14.
Ammonia (NH3)-oxidizing bacteria (AOB) and thaumarchaea (AOA) co-occupy most soils, yet no short-term growth-independent method exists to determine their relative contributions to nitrification in situ. Microbial monooxygenases differ in their vulnerability to inactivation by aliphatic n-alkynes, and we found that NH3 oxidation by the marine thaumarchaeon Nitrosopumilus maritimus was unaffected during a 24-h exposure to ≤20 μM concentrations of 1-alkynes C8 and C9. In contrast, NH3 oxidation by two AOB (Nitrosomonas europaea and Nitrosospira multiformis) was quickly and irreversibly inactivated by 1 μM C8 (octyne). Evidence that nitrification carried out by soilborne AOA was also insensitive to octyne was obtained. In incubations (21 or 28 days) of two different whole soils, both acetylene and octyne effectively prevented NH4+-stimulated increases in AOB population densities, but octyne did not prevent increases in AOA population densities that were prevented by acetylene. Furthermore, octyne-resistant, NH4+-stimulated net nitrification rates of 2 and 7 μg N/g soil/day persisted throughout the incubation of the two soils. Other evidence that octyne-resistant nitrification was due to AOA included (i) a positive correlation of octyne-resistant nitrification in soil slurries of cropped and noncropped soils with allylthiourea-resistant activity (100 μM) and (ii) the finding that the fraction of octyne-resistant nitrification in soil slurries correlated with the fraction of nitrification that recovered from irreversible acetylene inactivation in the presence of bacterial protein synthesis inhibitors and with the octyne-resistant fraction of NH4+-saturated net nitrification measured in whole soils. Octyne can be useful in short-term assays to discriminate AOA and AOB contributions to soil nitrification.  相似文献   

15.
王智慧  蒋先军 《微生物学报》2021,61(7):1933-1944
【目的】揭示典型农田旱地紫色土硝化微生物的群落组成及其对pH的响应规律。【方法】针对同一母质发育但pH差异显著的3种紫色土,利用宏基因组技术深度测序研究土壤中硝化微生物丰度和群落,包括氨氧化古菌(ammonia-oxidizing archaea,AOA),氨氧化细菌(ammonia-oxidizing bacteria,AOB),亚硝酸盐氧化细菌(nitrite-oxidizingbacteria,NOB)和全程氨氧化细菌(completeammoniaoxidizer,Comammox)。【结果】土壤中硝化微生物的丰度占总微生物的2.130%–6.082%。3种紫色土中AOA、AOB和NOB的相对丰度有显著差异:酸性紫色土中AOA的相对丰度显著大于碱性紫色土,而AOB则相反;NOB的相对丰度在中性紫色土中最高。所有土样中均发现了1种全程氨氧化细菌Candidatus Nitrospira inopinata (Ca. N. inopinata),其在中性紫色土中相对丰度最高,占总微生物的0.203%。3种不同pH紫色土中AOA均以Nitrososphaera为主,NOB均以Nitrospira为主;酸性紫色土中AOB以Nitroscoccus为主,而中性和石灰性紫色土中则以Nitrosospira为主。Pearson相关性分析发现,土壤pH和铵态氮是影响硝化微生物丰度最大的两个因子。【结论】Comammox存在于3种不同pH紫色土中,且偏好中性环境;AOA、AOB和NOB群落结构和相对丰度都存在显著差异,结合相关性分析发现土壤pH和铵态氮是导致差异最重要的两个因子。  相似文献   

16.
由氨氧化微生物驱动的氨氧化过程是硝化作用的限速步骤,在土壤氮素循环过程中扮演着重要角色.以湖南省宁乡县长达30 a定位试验水稻土壤为研究对象,采用荧光定量PCR和Illumina MiSeq高通量测序分析方法,以amoA基因为靶标,研究了4种施肥制度[不施肥(CK)、化肥(CF)、70%化肥+30%有机肥(CFM1)和40%化肥+60%有机肥(CFM2)]水稻土壤氨氧化微生物的数量和群落结构变化.结果表明: 不同施肥处理氨氧化古菌(AOA)和氨氧化细菌(AOB) amoA基因拷贝数分别为3.09×107~8.37×107和1.04×107~7.03×107 copies·g-1干土.施肥显著提高了AOA和AOB数量,但处理CFM2中AOB数量与CK差异不显著.有机肥配施比例对AOB群落α多样性指数的影响强于AOA,处理CFM1中AOA群落的多样性指数(Shannon)和AOB群落的丰富度指数(ACE和Chao1)均显著高于CK.奇古菌门和泉古菌门是AOA群落的优势门类群,占AOA amoA基因总序列的83.4%;亚硝化螺菌属、environmental_samples_norank、Bacteria_unclassified和Nitrosomonadales_unclassified是AOB群落的优势属类群,占AOB amoA基因总序列的97.8%.维恩分析结果显示,有机肥配施比例对AOB群落操作分类单元(OTU)数量的影响强于AOA,但对各处理共有AOA和AOB amoA基因序列条数的影响均较小.冗余分析结果显示,不同施肥处理AOB群落结构差异强于AOA,且所有土壤理化性质均与AOA和AOB群落结构存在显著相关关系.综上可知:有机肥配施比例显著改变了AOA和AOB数量、多样性和群落结构,配施30%有机肥时,AOA群落的Shannon指数最高,AOB群落数量、ACE和Chao1指数均最高.研究结果可为进一步探讨农业系统中氨氧化微生物对不同施肥制度的响应机制及其在氮素转化中的作用提供科学依据.  相似文献   

17.
The first step of nitrification, oxidation of ammonia to nitrite, is performed by both ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) in soil, but their relative contributions to ammonia oxidation and existence in distinct ecological niches remain to be determined. To determine whether available ammonia concentration has a differential effect on AOA and AOB growth, soil microcosms were incubated for 28 days with ammonium at three concentrations: native (control), intermediate (20 μg NH4+-N per gram of soil) and high (200 μg NH4+-N per gram of soil). Quantitative PCR demonstrated growth of AOA at all concentrations, whereas AOB growth was prominent only at the highest concentration. Similarly, denaturing gradient gel electrophoresis (DGGE) analysis revealed changes in AOA communities at all ammonium concentrations, whereas AOB communities changed significantly only at the highest ammonium concentration. These results provide evidence that ammonia concentration contributes to the definition of distinct ecological niches of AOA and AOB in soil.  相似文献   

18.
Nitrification has been believed to be performed only by autotrophic ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) until the recent discovery of ammonia-oxidizing archaea (AOA). Meanwhile, it has been questioned whether AOB are significantly responsible for NH(3) oxidation in acidic forest soils. Here, we investigated nitrifying communities and their activity in highly acidified soils of three subtropical forests in southern China that had received chronic high atmospheric N deposition. Nitrifying communities were analyzed using PCR- and culture (most probable number)-based approaches. Nitrification activity was analyzed by measuring gross soil nitrification rates using a (15) N isotope dilution technique. AOB were not detected in the three forest soils: neither via PCR of 16S rRNA and ammonia monooxygenase (amoA) genes nor via culture-based approaches. In contrast, an extraordinary abundance of the putative archaeal amoA was detected (3.2?×?10(8) -1.2?×?10(9) g?soil(-1) ). Moreover, this abundance was correlated with gross soil nitrification rates. This indicates that amoA-possessing archaea rather than bacteria were predominantly responsible for nitrification of the soils. Furthermore, sequences of the genus Nitrospira, a dominant group of soil NOB, were detected. Thus, nitrification of acidified subtropical forest soils in southern China could be performed by a combination of AOA and NOB.  相似文献   

19.
氨氧化是硝化作用的限速步骤,也是评估土壤氮循环和提高氮肥利用效率的重要指标。以内蒙古农牧业科学院旱作实验站长期定位实验为基础,通过实时荧光定量PCR和末端限制性片段长度多态性分析,研究了5种施肥方式(单施氮肥、单施有机肥、氮磷钾配施、有机无机配施和不施肥)对土壤氨氧化古菌(AOA)和氨氧化细菌(AOB)群落丰度、结构和活性的影响。结果表明:单施氮肥、氮磷钾肥配施以及有机无机肥配施均能显著提高AOB的丰度以及土壤硝化潜势。Nitrosospiria cluster 3a.1是不施肥土壤中主要的AOB种群,而施用氮肥后优势种群转变为Nitrosospiria cluster 3a.2。Nitrosospiria cluster 3b的比例在施用有机肥处理土壤中显著升高。在干旱半干旱地区,土壤pH和含水量是解释AOB群落结构变化的关键环境因子。AOA的丰度在单独施用氮肥处理中显著升高,但不同施肥方式对AOA的群落结构没有显著影响。  相似文献   

20.
Ammonia oxidation is an important process for global nitrogen cycling. Both ammonia-oxidizing bacteria (AOB) and archaea (AOA) can be the important players in nitrification process. However, their relative contribution to nitrification remains controversial. This study investigated the abundance and community structure of AOA and AOB in sediment of Miyun Reservoir and adjacent soils. Quantitative PCR assays indicated that the highest AOA abundance occurred in unplanted riparian soil, followed by reservoir sediment, reed-planted riparian soil and agricultural soil. The AOB community size in agricultural soil was much larger than that in the other habitats. Large variations in the structures of AOA and AOB were also observed among the different habitats. The abundance of Nitrosospira-like AOB species were detected in the agricultural soil and reservoir sediment. Pearson’s correlation analysis showed the AOB diversity had positive significant correlations with pH and total nitrogen, while the AOA diversity might be negatively affected by nitrate nitrogen and ammonia nitrogen. This work could add new insights towards nitrification in aquatic and terrestrial ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号