首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Soils are among the important sources of atmospheric nitric oxide (NO) and nitrous oxide (N2O), acting as a critical role in atmospheric chemistry. Updated data derived from 114 peer‐reviewed publications with 520 field measurements were synthesized using meta‐analysis procedure to examine the N fertilizer‐induced soil NO and the combined NO+N2O emissions across global soils. Besides factors identified in earlier reviews, additional factors responsible for NO fluxes were fertilizer type, soil C/N ratio, crop residue incorporation, tillage, atmospheric carbon dioxide concentration, drought and biomass burning. When averaged across all measurements, soil NO‐N fluxes were estimated to be 4.06 kg ha?1 yr?1, with the greatest (9.75 kg ha?1 yr?1) in vegetable croplands and the lowest (0.11 kg ha?1 yr?1) in rice paddies. Soil NO emissions were more enhanced by synthetic N fertilizer (+38%), relative to organic (+20%) or mixed N (+18%) sources. Compared with synthetic N fertilizer alone, synthetic N fertilizer combined with nitrification inhibitors substantially reduced soil NO emissions by 81%. The global mean direct emission factors of N fertilizer for NO (EFNO) and combined NO+N2O (EFc) were estimated to be 1.16% and 2.58%, with 95% confidence intervals of 0.71–1.61% and 1.81–3.35%, respectively. Forests had the greatest EFNO (2.39%). Within the croplands, the EFNO (1.71%) and EFc (4.13%) were the greatest in vegetable cropping fields. Among different chemical N fertilizer varieties, ammonium nitrate had the greatest EFNO (2.93%) and EFc (5.97%). Some options such as organic instead of synthetic N fertilizer, decreasing N fertilizer input rate, nitrification inhibitor and low irrigation frequency could be adopted to mitigate soil NO emissions. More field measurements over multiyears are highly needed to minimize the estimate uncertainties and mitigate soil NO emissions, particularly in forests and vegetable croplands.  相似文献   

2.
The current Intergovernmental Panel on Climate Change (IPCC) default methodology (tier 1) for calculating nitrous oxide (N2O) emissions from nitrogen applied to agricultural soils takes no account of either crop type or climatic conditions. As a result, the methodology omits factors that are crucial in determining current emissions, and has no mechanism to assess the potential impact of future climate and land‐use change. Scotland is used as a case study to illustrate the development of a new methodology, which retains the simple structure of the IPCC tier 1 methodology, but incorporates crop‐ and climate‐dependent emission factors (EFs). It also includes a factor to account for the effect of soil compaction because of trampling by grazing animals. These factors are based on recent field studies in Scotland and elsewhere in the UK. Under current conditions, the new methodology produces significantly higher estimates of annual N2O emissions than the IPCC default methodology, almost entirely because of the increased contribution of grazed pasture. Total emissions from applied fertilizer and N deposited by grazing animals are estimated at 10 662 t N2O‐N yr?1 using the newly derived EFs, as opposed to 6 796 t N2O‐N yr?1 using the IPCC default EFs. On a spatial basis, emission levels are closer to those calculated using field observations and detailed soil modelling than to estimates made using the IPCC default methodology. This can be illustrated by parts of the western Ayrshire basin, which have previously been calculated to emit 8–9 kg N2O‐N ha?1 yr?1 and are estimated here as 6.25–8.75 kg N2O‐N ha?1 yr?1, while the IPCC default methodology gives a maximum emission level of only 3.75 kg N2O‐N ha?1 yr?1 for the whole area. The new methodology is also applied in conjunction with scenarios for future climate‐ and land‐use patterns, to assess how these emissions may change in the future. The results suggest that by 2080, Scottish N2O emissions may increase by up to 14%, depending on the climate scenario, if fertilizer and land management practices remain unchanged. Reductions in agricultural land use, however, have the potential to mitigate these increases and, depending on the replacement land use, may even reduce emissions to below current levels.  相似文献   

3.
Nitrous oxide emissions from a cropped soil in a semi-arid climate   总被引:5,自引:0,他引:5  
Understanding nitrous oxide (N2O) emissions from agricultural soils in semi‐arid regions is required to better understand global terrestrial N2O losses. Nitrous oxide emissions were measured from a rain‐fed, cropped soil in a semi‐arid region of south‐western Australia for one year on a sub‐daily basis. The site included N‐fertilized (100 kg N ha?1 yr?1) and nonfertilized plots. Emissions were measured using soil chambers connected to a fully automated system that measured N2O using gas chromatography. Daily N2O emissions were low (?1.8 to 7.3 g N2O‐N ha?1 day?1) and culminated in an annual loss of 0.11 kg N2O‐N ha?1 from N‐fertilized soil and 0.09 kg N2O‐N ha?1 from nonfertilized soil. Over half (55%) the annual N2O emission occurred from both N treatments when the soil was fallow, following a series of summer rainfall events. At this time of the year, conditions were conducive for soil microbial N2O production: elevated soil water content, available N, soil temperatures generally >25 °C and no active plant growth. The proportion of N fertilizer emitted as N2O in 1 year, after correction for the ‘background’ emission (no N fertilizer applied), was 0.02%. The emission factor reported in this study was 60 times lower than the IPCC default value for the application of synthetic fertilizers to land (1.25%), suggesting that the default may not be suitable for cropped soils in semi‐arid regions. Applying N fertilizer did not significantly increase the annual N2O emission, demonstrating that a proportion of N2O emitted from agricultural soils may not be directly derived from the application of N fertilizer. ‘Background’ emissions, resulting from other agricultural practices, need to be accounted for if we are to fully assess the impact of agriculture in semi‐arid regions on global terrestrial N2O emissions.  相似文献   

4.

Background and aims

Knowledge on nitrous oxide (N2O) and nitric oxide (NO) emissions from typical cropping systems in the Tai-Lake region is important for estimating regional inventory and proposing effective N2O and NO mitigation options. This study aimed at a) characterizing the seasonal and annual emissions of both gases from the major cropping systems, and b) determining their direct emission factors (EFds) as the key parameters for inventory compilation.

Methods

Measurements of N2O and NO emissions were conducted year-round in the Tai-Lake region using a static opaque chamber method. The measurements involved a typical rice-wheat rotation ecosystem and a vegetable field. The two types of croplands were subjected to both a fertilized treatment and a control treatment without nitrogen addition. In the rice-wheat ecosystem, N2O emissions were measured throughout an entire year-round rotation spanning from June 2003 to June 2004, whereas NO emissions were measured only during the non-rice period. In the vegetable field, both N2O and NO emissions were measured from November 2003 to November 2004.

Results

During the investigation period, the average cumulative N2O and NO emissions under the fertilized conditions amounted to 3.80 and 0.80 (during the non-rice period for NO) kg?N?ha?1, respectively, in the rice-wheat field, and 20.81 and 47.13?kg?N ha?1, respectively, in the vegetable field. The average total N2O and NO emissions under the control conditions were 1.39 and 0.29 (during the non-rice period for NO) kg?N?ha?1, respectively, in the rice?wheat rotation, and 2.98 and 0.80?kg?N ha?1, respectively, in the vegetable field. The direct emission factor (EFd, which is defined as the loss rate of applied nitrogen via N2O or NO emissions in the current season or year) of N2O was annually determined to be 0.56?% in the rice-wheat field, while the seasonal EFd of NO was 0.34?% during the non-rice period of the rotation cycle. In the vegetable field, the seasonal EFds of N2O and NO varied from 0.15?% to 14.50?% and 0.80?% to 28.21?%, respectively, among different crop seasons; and the annual EFds were 1.38?% and 3.59?%, respectively.

Conclusions

This study suggests that conventional vegetable fields associated with intensive synthetic nitrogen application, as well as addition of manure slurry, may substantially contribute to the regional N2O and NO emissions though they account for a relatively small portion of the farmlands in the Tai-Lake region. However, further studies to be conducted at multiple field sites with conventional vegetable and rice-based fields are needed to test this conclusion.  相似文献   

5.

Aims

A field experiment was conducted to quantify annual nitrous oxide (N2O) fluxes from control and fertilized plots under open-air and greenhouse vegetable cropping systems in southeast China. We compiled the reported global field annual N2O flux measurements to estimate the emission factor of N fertilizer for N2O and its background emissions from vegetable fields.

Methods

Fluxes of N2O were measured using static chamber-GC techniques over the 2010–2011 annual cycle with multiple cropping seasons.

Results

The mean annual N2O fluxes from the controls were 46.1?±?2.3 μg N2O-N m?2 hr?1 and 68.3?±?4.1 μg N2O-N m?2 hr?1 in the open-air and greenhouse vegetable systems, respectively. For the plots receiving 900 kg?N?ha?1, annual N2O emissions averaged 90.6?±?8.9 μg N2O-N m?2 hr?1 and 106.4?±?6.6 μg N2O-N?m?2 hr?1 in the open-air and greenhouse vegetable systems, respectively. By pooling published field N2O flux measurements taken over or close to a full year, the N2O emission factor for N fertilizer averaged 0.63?±?0.09 %, with a background emission of 2.67?±?0.80 kg N2O-N ha?1 in Chinese vegetable fields. Annual N2O emissions from Chinese vegetable systems were estimated to be 84.7 Gg N2O-N yr?1, consisting of 72.5 Gg N2O-N yr?1 and 12.2 Gg N2O-N yr?1 in the open-air and greenhouse vegetable systems, respectively.

Conclusions

While N2O emissions from the greenhouse vegetable cropping system tended to be slightly higher compared to the open-air system in our experiment, the synthesis of literature data suggests that N2O emissions would be greater at low N-rates but smaller at high N-rates in greenhouse systems than in open-air vegetable cropping systems. The estimates of this study suggest that vegetable cropping systems covering 11.4 % in national total cropping area, contributed 21–25 % to the total N2O emission from Chinese croplands.  相似文献   

6.
Nitrogen fertilizer‐induced direct nitrous oxide (N2O) emissions depend on water regimes in paddy fields, such as seasonal continuous flooding (F), flooding–midseason drainage–reflooding (F‐D‐F), and flooding–midseason drainage–reflooding–moist intermittent irrigation but without water logging (F‐D‐F‐M). In order to estimate the changes in direct N2O emission from paddy fields during the rice‐growing season in Mainland of China between the 1950s and the 1990s, the country‐specific emission factors of N2O‐N under different water regimes combined with rice production data were adopted in the present study. Census statistics on rice production showed that water management and nitrogen input regimes have changed in rice paddies since the 1950s. During the 1950s–1970s, about 20–25% of the rice paddy was continuously waterlogged, and 75–80% under the water regime of F‐D‐F. Since the 1980s, about 12–16%, 77%, and 7–12% of paddy fields were under the water regimes of F, F‐D‐F, and F‐D‐F‐M, respectively. Total nitrogen input during the rice‐growing season has increased from 87.5 kg N ha−1 in the 1950s to 224.6 kg N ha−1 in the 1990s. The emission factors of N2O‐N were estimated to be 0.02%, 0.42%, and 0.73% for rice paddies under the F, F‐D‐F, and F‐D‐F‐M water regimes, respectively. Seasonal N2O emissions have increased from 9.6 Gg N2O‐N each year in the 1950s to 32.3 Gg N2O‐N in the 1990s, which is accompanied by the increase in rice yield over the period 1950s–1990s. The uncertainties in N2O estimate were estimated to be 59.8% in the 1950s and 37.5% in the 1990s. In the 1990s, N2O emissions during the rice‐growing season accounted for 8–11% of the reported annual total of N2O emissions from croplands in China, suggesting that paddy rice development could have contributed to mitigating agricultural N2O emissions in the past decades. However, seasonal N2O emissions would be increased, given that saving‐water irrigation and nitrogen inputs are increasingly adopted in rice paddies in China.  相似文献   

7.
Cotton is one of the major crops worldwide and delivers fibers to textile industries across the globe. Its cultivation requires high nitrogen (N) input and additionally irrigation, and the combination of both has the potential to trigger high emissions of nitrous oxide (N2O) and nitric oxide (NO), thereby contributing to rising levels of greenhouse gases in the atmosphere. Using an automated static chamber measuring system, we monitored in high temporal resolution N2O and NO fluxes in an irrigated cotton field in Northern China, between January 1st and December 31st 2008. Mean daily fluxes varied between 5.8 to 373.0 µg N2O-N m?2?h?1 and ?3.7 to 135.7 µg NO-N m?2?h?1, corresponding to an annual emission of 2.6 and 0.8 kg N ha?1?yr?1 for N2O and NO, respectively. The highest emissions of both gases were observed directly after the N fertilization and lasted approximately 1 month. During this time period, the emission was 0.85 and 0.22 kg N ha?1 for N2O and NO, respectively, and was responsible for 32.3% and 29.0% of the annual total N2O and NO loss. Soil temperature, moisture and mineral N content significantly affected the emissions of both gases (p?<?0.01). Direct emission factors were estimated to be 0.95% (N2O) and 0.24% (NO). We also analyzed the effects of sampling time and frequency on the estimations of annual cumulative N2O and NO emissions and found that low frequency measurements produced annual estimates which differed widely from those that were based on continuous measurements.  相似文献   

8.
The long‐term effects of conservation management practices on greenhouse gas fluxes from tropical/subtropical croplands remain to be uncertain. Using both manual and automatic sampling chambers, we measured N2O and CH4 fluxes at a long‐term experimental site (1968–present) in Queensland, Australia from 2006 to 2009. Annual net greenhouse gas fluxes (NGGF) were calculated from the 3‐year mean N2O and CH4 fluxes and the long‐term soil organic carbon changes. N2O emissions exhibited clear daily, seasonal and interannual variations, highlighting the importance of whole‐year measurement over multiple years for obtaining temporally representative annual emissions. Averaged over 3 years, annual N2O emissions from the unfertilized and fertilized soils (90 kg N ha?1 yr?1 as urea) amounted to 138 and 902 g N ha?1, respectively. The average annual N2O emissions from the fertilized soil were 388 g N ha?1 lower under no‐till (NT) than under conventional tillage (CT) and 259 g N ha?1 higher under stubble retention (SR) than under stubble burning (SB). Annual N2O emissions from the unfertilized soil were similar between the contrasting tillage and stubble management practices. The average emission factors of fertilizer N were 0.91%, 1.20%, 0.52% and 0.77% for the CT‐SB, CT‐SR, NT‐SB and NT‐SR treatments, respectively. Annual CH4 fluxes from the soil were very small (?200–300 g CH4 ha?1 yr?1) with no significant difference between treatments. The NGGF were 277–350 kg CO2‐e ha?1 yr?1 for the unfertilized treatments and 401–710 kg CO2‐e ha?1 yr?1 for the fertilized treatments. Among the fertilized treatments, N2O emissions accounted for 52–97% of NGGF and NT‐SR resulted in the lowest NGGF (401 kg CO2‐e ha?1 yr?1 or 140 kg CO2‐e t?1 grain). Therefore, NT‐SR with improved N fertilizer management practices was considered the most promising management regime for simultaneously achieving maximal yield and minimal NGGF.  相似文献   

9.
The impact of agricultural management on global warming potential (GWP) and greenhouse gas intensity (GHGI) is not well documented. A long‐term fertilizer experiment in Chinese double rice‐cropping systems initiated in 1990 was used in this study to gain an insight into a complete greenhouse gas accounting of GWP and GHGI. The six fertilizer treatments included inorganic fertilizer [nitrogen and phosphorus fertilizer (NP), nitrogen and potassium fertilizer (NK), and balanced inorganic fertilizer (NPK)], combined inorganic/organic fertilizers at full and reduced rate (FOM and ROM), and no fertilizer application as a control. Methane (CH4) and nitrous oxide (N2O) fluxes were measured using static chamber method from November 2006 through October 2009, and the net ecosystem carbon balance was estimated by the changes in topsoil (0–20 cm) organic carbon (SOC) density over the 10‐year period 1999–2009. Long‐term fertilizer application significantly increased grain yields, except for no difference between the NK and control plots. Annual topsoil SOC sequestration rate was estimated to be 0.96 t C ha?1 yr?1 for the control and 1.01–1.43 t C ha?1 yr?1 for the fertilizer plots. Long‐term inorganic fertilizer application tended to increase CH4 emissions during the flooded rice season and significantly increased N2O emissions from drained soils during the nonrice season. Annual mean CH4 emissions ranged from 621 kg CH4 ha?1 for the control to 1175 kg CH4 ha?1 for the FOM plots, 63–83% of which derived from the late‐rice season. Annual N2O emission averaged 1.15–4.11 kg N2O–N ha?1 in the double rice‐cropping systems. Compared with the control, inorganic fertilizer application slightly increased the net annual GWPs, while they were remarkably increased by combined inorganic/organic fertilizer application. The GHGI was lowest for the NP and NPK plots and highest for the FOM and ROM plots. The results of this study suggest that agricultural economic viability and GHGs mitigation can be simultaneously achieved by balanced fertilizer application.  相似文献   

10.
Emissions of N2O were measured during the growth season over a year from grass swards under ambient (360 μL L?1) and elevated (600 μL L?1) CO2 partial pressures at the Free Air Carbon dioxide Enrichment (FACE) experiment, Eschikon, Switzerland. Measurements were made following high (56 g N m?2 yr?1) and low (14 g N m?2 yr?1) rates of fertilizer application, split over 5 re‐growth periods, to Lolium perenne, Trifolium repens and mixed Lolium/Trifolium swards. Elevated pCO2 increased annual emissions of N2O from the high fertilized Lolium and mixed Lolium/Trifolium swards resulting in increases in GWP (N2O emissions) of 179 and 111 g CO2 equivalents m?2, respectively, compared with the GWP of ambient pCO2 swards, but had no significant effect on annual emissions from Trifolium monoculture swards. The greater emissions from the high fertilized elevated pCO2Lolium swards were attributed to greater below‐ground C allocation under elevated pCO2 providing the energy for denitrification in the presence of excess mineral N. An annual emission of 959 mg N2O‐N m?2 yr?1 (1.7% of fertilizer N applied) was measured from the high fertilized Lolium sward under elevated pCO2. The magnitude of emissions varied throughout the year with 84% of the total emission from the elevated pCO2Lolium swards measured during the first two re‐growths (April–June 2001). This was associated with higher rainfall and soil water contents at this time of year. Trends in emissions varied between the first two re‐growths (April–June 2001) and the third, fourth and fifth re‐growths (late June–October 2000), with available soil NO3? and rainfall explaining 70%, and soil water content explaining 72% of the variability in N2O in these periods, respectively. Caution is therefore required when extrapolating from short‐term measurements to predict long‐term responses to global climate change. Our findings are of global significance as increases in atmospheric concentrations of CO2 may, depending on sward composition and fertilizer management, increase greenhouse gas emissions of N2O, thereby exacerbating the forcing effect of elevated CO2 on global climate. Our results suggest that when applying high rates of N fertilizer to grassland systems, Trifolium repens swards, or a greater component of Trifolium in mixed swards, may minimize the negative effect of continued increasing atmospheric CO2 concentrations on global warming.  相似文献   

11.
Bioethanol from sugarcane is becoming an increasingly important alternative energy source worldwide as it is considered to be both economically and environmentally sustainable. Besides being produced from a tropical perennial grass with high photosynthetic efficiency, sugarcane ethanol is commonly associated with low N fertilizer use because sugarcane from Brazil, the world's largest sugarcane producer, has a low N demand. In recent years, several models have predicted that the use of sugarcane ethanol in replacement to fossil fuel could lead to high greenhouse gas (GHG) emission savings. However, empirical data that can be used to validate model predictions and estimates from indirect methodologies are scarce, especially with regard to emissions associated with different fertilization methods and agricultural management practices commonly used in sugarcane agriculture in Brazil. In this study, we provide in situ data on emissions of three GHG (CO2, N2O, and CH4) from sugarcane soils in Brazil and assess how they vary with fertilization methods and management practices. We measured emissions during the two main phases of the sugarcane crop cycle (plant and ratoon cane), which include different fertilization methods and field conditions. Our results show that N2O and CO2 emissions in plant cane varied significantly depending on the fertilization method and that waste products from ethanol production used as organic fertilizers with mineral fertilizer, as it is the common practice in Brazil, increase emission rates significantly. Cumulatively, the highest emissions were observed for ratoon cane treated with vinasse (liquid waste from ethanol production) especially as the amount of crop trash on the soil surface increased. Emissions of CO2 and N2O were 6.9 kg ha?1 yr?1 and 7.5 kg ha?1 yr?1, respectively, totaling about 3000 kg in CO2 equivalent ha?1 yr?1.  相似文献   

12.
Overviewing the European carbon (C), greenhouse gas (GHG), and non‐GHG fluxes, gross primary productivity (GPP) is about 9.3 Pg yr?1, and fossil fuel imports are 1.6 Pg yr?1. GPP is about 1.25% of solar radiation, containing about 360 × 1018 J energy – five times the energy content of annual fossil fuel use. Net primary production (NPP) is 50%, terrestrial net biome productivity, NBP, 3%, and the net GHG balance, NGB, 0.3% of GPP. Human harvest uses 20% of NPP or 10% of GPP, or alternatively 1‰ of solar radiation after accounting for the inherent cost of agriculture and forestry, for production of pesticides and fertilizer, the return of organic fertilizer, and for the C equivalent cost of GHG emissions. C equivalents are defined on a global warming potential with a 100‐year time horizon. The equivalent of about 2.4% of the mineral fertilizer input is emitted as N2O. Agricultural emissions to the atmosphere are about 40% of total methane, 60% of total NO‐N, 70% of total N2O‐N, and 95% of total NH3‐N emissions of Europe. European soils are a net C sink (114 Tg yr?1), but considering the emissions of GHGs, soils are a source of about 26 Tg CO2 C‐equivalent yr?1. Forest, grassland and sediment C sinks are offset by GHG emissions from croplands, peatlands and inland waters. Non‐GHGs (NH3, NOx) interact significantly with the GHG and the C cycle through ammonium nitrate aerosols and dry deposition. Wet deposition of nitrogen (N) supports about 50% of forest timber growth. Land use change is regionally important. The absolute flux values total about 50 Tg C yr?1. Nevertheless, for the European trace‐gas balance, land‐use intensity is more important than land‐use change. This study shows that emissions of GHGs and non‐GHGs significantly distort the C cycle and eliminate apparent C sinks.  相似文献   

13.
Mosier  Arvin R 《Plant and Soil》2001,228(1):17-27
Crop and livestock agricultural production systems are important contributors to local, regional and global budgets of NH3, NOx (NO + NO2) and N2O. Emissions of NH3 and NOx (which are biologically and chemically active) into the atmosphere serve to redistribute fixed N to local and regional aquatic and terrestrial ecosystems that may otherwise be disconnected from the sources of the N gases. The emissions of NOx also contribute to local elevated ozone concentrations while N2O emissions contribute to global greenhouse gas accumulation and to stratospheric ozone depletion.Ammonia is the major gaseous base in the atmosphere and serves to neutralize about 30% of the hydrogen ions in the atmosphere. Fifty to 75% of the 55 Tg N yr–1 NH3 from terrestrial systems is emitted from animal and crop-based agriculture from animal excreta and synthetic fertilizer application. About half of the 50 Tg N yr–1 of NOx emitted from the earth surface annually arises from fossil fuel combustion and the remainder from biomass burning and emissions from soil. The NOx emitted, principally as nitric oxide (NO), reacts rapidly in the atmosphere and in a complex cycle with light, ozone and hydrocarbons, and produces nitric acid and particulate nitrate. These materials can interact with plants and the soil locally or be transported form the site and interact with atmospheric particulate to form aerosols. These salts and aerosols return to fertilize terrestrial and aquatic systems in wet and dry deposition. A small fraction of this N may be biologically converted to N2O. About 5% of the total atmospheric greenhouse effect is attributed to N2O from which 70% of the annual global anthropogenic emissions come from animal and crop production.The coupling of increased population with a move of a large sector of the world population to diets that require more energy and N input, will lead to continued increases in anthropogenic input into the global N cycle. This scenario suggests that emissions of NH3, NOx and N2O from agricultural systems will continue to increase and impact global terrestrial and aquatic systems, even those far removed from agricultural production, to an ever growing extent, unless N resources are used more efficiently or food consumption trends change.  相似文献   

14.
Data for the historical years 1970 and 1995 and the FAO-Agriculture Towards 2030 projection are used to calculate N inputs (N fertilizer, animal manure, biological N fixation and atmospheric deposition) and the N export from the field in harvested crops and grass and grass consumption by grazing animals. In most industrialized countries we see a gradual increase of the overall N recovery of the intensive agricultural production systems over the whole 1970–2030 period. In contrast, low N input systems in many developing countries sustained low crop yields for many years but at the cost of soil fertility by depleting soil nutrient pools. In most developing countries the N recovery will increase in the coming decades by increasing efficiencies of N use in both crop and livestock production systems. The surface balance surplus of N is lost from the agricultural system via different pathways, including NH3 volatilization, denitrification, N2O and NO emissions, and nitrate leaching from the root zone. Global NH3-N emissions from fertilizer and animal manure application and stored manure increased from 18 to 34 Tg·yr?1 between 1970 and 1995, and will further increase to 44 Tg·yr?1 in 2030. Similar developments are seen for N2O-N (2.0 Tg·yr?1 in 1970, 2.7 Tg·yr?1 in 1995 and 3.5 Tg·yr?1 in 2030) and NO-N emissions (1.1 Tg·yr?1 in 1970,1.5 Tg·yr?1 in 1995 and 2.0 Tg·yr?1 in 2030).  相似文献   

15.
A better understanding of nitric oxide (NO) emission from a typical rice-wheat agroecosystem in eastern China is important for calculating the regional inventory and to propose effective NO mitigation options. Nitric oxide flux measurements by static chamber method were made from treatments of conventional nitrogen-fertilizer (NPK plus urea) application, no-nitrogen application, and nitrogen-fertilizer with incorporation of wheat straw residue for an entire rotation period (June 2002 to June 2003). During the wheat growing season two further treatments of fertilizer without crops planted and bare soil without nitrogen (N) fertilization were applied. Total annual NO emissions for the conventional fertilizer, no N fertilizer and fertilizer plus straw application were 0.44?±?0.01, 0.22?±?0.01, and 0.57?±?0.02 kg N ha?1y?1, respectively. On average 27% of this emission occurred during the rice season due to flooding/drainage cycle. The N fertilizer-induced emission factor for the conventional fertilizer treatment was 0.05% of the total N applied. Incorporation of wheat straw in the rice season showed no significant effect on NO flux due to the high C/N ratio of the straw incorporated. During the wheat growing season, NO emissions for all treatments had similar variation pattern controlled by soil moisture dynamics. Total NO emissions in the wheat season for fertilized bare soil (no wheat planted) were 0.389?±?0.01 and 0.21?±?0.01 kg N ha?1 y?1, respectively. The results indicate the importance of N fertilizer and soil moisture to nitrogen loss through the formation of NO.  相似文献   

16.
Global nitrogen (N) enrichment has resulted in increased nitrous oxide (N2O) emission that greatly contributes to climate change and stratospheric ozone destruction, but little is known about the N2O emissions from urban river networks receiving anthropogenic N inputs. We examined N2O saturation and emission in the Shanghai city river network, covering 6300 km2, over 27 months. The overall mean saturation and emission from 87 locations was 770% and 1.91 mg N2O‐N m?2 d?1, respectively. Nitrous oxide (N2O) saturation did not exhibit a clear seasonality, but the temporal pattern was co‐regulated by both water temperature and N loadings. Rivers draining through urban and suburban areas receiving more sewage N inputs had higher N2O saturation and emission than those in rural areas. Regression analysis indicated that water ammonium (NH4+) and dissolved oxygen (DO) level had great control on N2O production and were better predictors of N2O emission in urban watershed. About 0.29 Gg N2O‐N yr?1 N2O was emitted from the Shanghai river network annually, which was about 131% of IPCC's prediction using default emission values. Given the rapid progress of global urbanization, more study efforts, particularly on nitrification and its N2O yielding, are needed to better quantify the role of urban rivers in global riverine N2O emission.  相似文献   

17.
Field undisturbed tension-free monolith lysimeters and 15N-labeled urea were used to investigate the fate of fertilizer nitrogen in paddy soil in the Taihu Lake region under a summer rice-winter wheat rotation system. We determined nitrogen recovered by rice and wheat, N remained in soil, and the losses of reactive N (i.e., NH3, N2O, NO3 ?, organic N and NH4 +) to the environment. Quantitative allocation of nitrogen fate varied for the rice and wheat growing seasons. At the conventional application rate of 550 kg N ha?1 y?1 (250 kg N ha?1 for wheat and 300 kg N ha?1 for rice), nitrogen recovery of wheat and rice were 49% and 41%, respectively. The retention of fertilizer N in soil at harvest accounted for 29% in the wheat season and for 22% in the rice season. N losses through NH3 volatilization from flooded rice paddy was 12%, far greater than that in the wheat season (less than 1%), while N leaching and runoff comprised only 0.3% in the rice season and 5% in the wheat season. Direct N2O emission was 0.12% for the rice season and 0.14% for the wheat season. The results also showed that some dissolved organic N (DON) were leached in both crop seasons. For the wheat season, DON contributed 40–72% to the N- leaching, in the rice season leached DON was 64–77% of the total N leaching. With increasing fertilizer application rate, NH3 volatilization in the rice season increased proportionally more than the fertilizer increase, N leaching in the wheat season was proportional to the increase of fertilizer rate, while N2O emission increased less in proportion than fertilizer increase both in the rice season and wheat season.  相似文献   

18.
This study analyses the spatial and temporal variability of N2O emissions from the agricultural soils of Belgium. Annual N2O emission rates are estimated with two statistical models, MCROPS and MGRASS, which take account of the impact of changes in land use, climate, and nitrogen‐fertilization rate. The models are used to simulate the temporal trend of N2O emissions between 1990 and 2050 for a 10′ latitude and longitude grid. The results are also aggregated to the regional and national scale to facilitate comparison with other studies and national inventories. Changes in climate and land use are derived from the quantitative scenarios developed by the ATEAM project based on the Intergovernmental Panel on Climate Change‐Special Report on Emissions Scenarios (IPCC‐SRES) storylines. The average N2O flux for Belgium was estimated to be 8.6 × 106 kg N2O‐N yr−1 (STD = 2.1 × 106 kg N2O‐N yr−1) for the period 1990–2000. Fluxes estimated for a single year (1996) give a reasonable agreement with published results at the national and regional scales for the same year. The scenario‐based simulations of future N2O emissions show the strong influence of land‐use change. The scenarios A1FI, B1 and B2 produce similar results between 2001 and 2050 with a national emission rate in 2050 of 11.9 × 106 kg N2O‐N yr−1. The A2 scenario, however, is very sensitive to the reduction in agricultural land areas (−14% compared with the 1990 baseline), which results in a reduced emission rate in 2050 of 8.3 × 106 kg N2O‐N yr−1. Neither the climatic change scenarios nor the reduction in nitrogen fertilization rate could explain these results leading to the conclusion that N2O emissions from Belgian agricultural soils will be more markedly affected by changes in agricultural land areas.  相似文献   

19.
京郊典型设施蔬菜地土壤N_2O排放特征   总被引:10,自引:0,他引:10  
张婧  李虎  王立刚  邱建军 《生态学报》2014,34(14):4088-4098
利用静态暗箱-气相色谱法对北京郊区设施蔬菜地典型种植模式(番茄-白菜-生菜)下土壤N2O排放特征进行了周年(2012年2月22日—2013年2月23日)观测,探讨了不同处理下(即不施氮肥处理(CK)、农民习惯施肥处理(FP)、减氮优化施肥处理(OPT)和减氮优化施肥+硝化抑制剂处理(OPT+DCD))N2O排放特征及土壤温度、土壤湿度、土壤无机氮含量对土壤N2O排放的影响。结果表明:每次施肥+灌溉之后设施蔬菜地会出现明显的N2O排放高峰,持续时间一般为3—5 d。不同处理N2O排放通量变化范围在-0.21—14.26 mg N2O m-2h-1,平均排放通量0.03—0.36 mg N2O m-2h-1。整个蔬菜生长季各处理N2O排放与土壤孔隙含水率(WFPS)均表现出极显著的正相关关系(P0.01);不施氮处理5 cm深度土壤温度与N2O排放通量呈现显著的正相关关系(P0.05);各处理N2O排放与土壤表层硝态氮含量具有较一致变化趋势。不同处理下N2O年度排放总量差异显著,依次顺序为FP((20.66±0.91)kg N/hm2)OPT((12.79±1.33)kg N/hm2)OPT+DCD((8.03±0.37)kg N/hm2)。与FP处理相比,OPT处理和OPT+DCD处理N2O年排放总量分别减少了38.09%和61.13%。各处理N2O排放系数介于0.36%—0.77%,低于IPCC 1.0%的推荐值。在目前的管理措施下,合理减少施氮量和添加硝化抑制剂是减少设施蔬菜地N2O排放量的有效途径。  相似文献   

20.
Oilseed rape is one of the leading feedstocks for biofuel production in Europe. The climate change mitigation effect of rape methyl ester (RME) is particularly challenged by the greenhouse gas (GHG) emissions during crop production, mainly as nitrous oxide (N2O) from soils. Oilseed rape requires high nitrogen fertilization and crop residues are rich in nitrogen, both potentially causing enhanced N2O emissions. However, GHG emissions of oilseed rape production are often estimated using emission factors that account for crop‐type specifics only with respect to crop residues. This meta‐analysis therefore aimed to assess annual N2O emissions from winter oilseed rape, to compare them to those of cereals and to explore the underlying reasons for differences. For the identification of the most important factors, linear mixed effects models were fitted with 43 N2O emission data points deriving from 12 different field sites. N2O emissions increased exponentially with N‐fertilization rates, but interyear and site‐specific variability were high and climate variables or soil parameters did not improve the prediction model. Annual N2O emissions from winter oilseed rape were 22% higher than those from winter cereals fertilized at the same rate. At a common fertilization rate of 200 kg N ha?1 yr?1, the mean fraction of fertilizer N that was lost as N2O‐N was 1.27% for oilseed rape compared to 1.04% for cereals. The risk of high yield‐scaled N2O emissions increased after a critical N surplus of about 80 kg N ha?1 yr?1. The difference in N2O emissions between oilseed rape and cereal cultivation was especially high after harvest due to the high N contents in oilseed rape's crop residues. However, annual N2O emissions of winter oilseed rape were still lower than predicted by the Stehfest and Bouwman model. Hence, the assignment of oilseed rape to the crop‐type classes of cereals or other crops should be reconsidered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号