首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Four hantaviruses-Hantaan virus (HTNV), Seoul virus (SEOV), Dobrava virus (DOBV) and Puumala virus-are known to cause hemorrhagic fever with renal syndrome (HFRS) in Europe and Asia. HTNV causes the most severe form of HFRS (5 to 15% case-fatality rate) and afflicts tens of thousands of people annually. Previously, we demonstrated that DNA vaccination with a plasmid expressing the SEOV M gene elicited neutralizing antibodies and protected hamsters against infection with SEOV and HTNV. Here, we report the construction and evaluation of a DNA vaccine that expresses the HTNV M gene products, G1 and G2. DNA vaccination of hamsters with the HTNV M gene conferred sterile protection against infection with HTNV, SEOV, and DOBV. DNA vaccination of rhesus monkeys with either the SEOV or HTNV M gene elicited high levels of neutralizing antibodies. These are the first immunogenicity data for hantavirus DNA vaccines in nonhuman primates. Because a neutralizing antibody response is considered a surrogate marker for protective immunity in humans, our protection data in hamsters combined with the immunogenicity data in monkeys suggest that hantavirus M gene-based DNA vaccines could protect humans against the most severe forms of HFRS.  相似文献   

2.
Eleven env mutants were designed and generated by site-directed mutagenesis of the regions around Nab epitopes and deletions of variable regions in env.The immunogenicities of the generated mutants were evaluated using single-cycle infection neutralization assays with two pseudoviruses and IFN-γELISPOT.Overall,five mutants(dWt,M2,M5-2,M5-1 and dM7)induced highed neutralization activities for both pseudoviruses than plasmid Wt,while only two of the mutants(dWt and M5-2)showed significant differences(P<0.05).Two mutants(M2 and dM2)induced more Env-specific T cells than plasmid Wt.Statistically however,significance was only reached for mutant M2.Thus,properly modified HIV-1 Env may have the potential to induce potent cellular and humoral immune responses.  相似文献   

3.
Eleven env mutants were designed and generated by site-directed mutagenesis of the regions around NAb epitopes and deletions of variable regions in env. The immunogenicities of the generated mutants were evaluated using single-cycle infection neutralization assays with two pseudoviruses and IFN-γ ELISPOT. Overall, five mutants (dWt, M2, M5-2, M5-1 and dM7) induced higher neutralization activities for both pseudoviruses than plasmid Wt, while only two of the mutants (dWt and M5-2) showed significant differences (P<0.05). Two mutants (M2 and dM2) induced more Env-specific T cells than plasmid Wt. Statistically however, significance was only reached for mutant M2. Thus, properly modified HIV-1 Env may have the potential to induce potent cellular and humoral immune responses.   相似文献   

4.
Many flaviviruses are emerging and reemerging pathogens, such as West Nile virus (WNV), dengue virus (DENV), yellow fever virus (YFV), and Japanese encephalitis virus. Serological assay is the dominant method for diagnosis of flavivirus infections in human. Because antibodies generated during flavivirus infections cross-react with other flavivirus members, plaque reduction neutralization test (PRNT) is the only available assay to determine the infecting flavivirus type.Since PRNT requires culturing raw viruses, it must be performed in biosafety level-3 or level-4 containment for many flaviviruses, and takes more than ten days to complete. To overcome these problems, we have developed flavivirus viral-like particles (VLPs) that could be used to replace raw viruses in the neutralization assay. The VLPs were prepared by trans packaging a luciferase-reporting replicon with viral structural proteins. This novel assay involves three simple steps: (ⅰ) VLPs from a panel of flaviviruses are incubated with flavivirus-infected sera at 37℃ for 1 h; (ⅱ)the neutralized VLPs are used to infect Vero cells; and (ⅲ) the infected cells are measured for luciferase activities at 22 h post-infection. The virus type whose VLP is most efficiently neutralized by the serum specimen (as quantified by the luciferase activities) is the etiologic agent. As a proof-of-concept, we show that a WNV-infected mouse serum neutralized the WNV VLP more efficiently and selectively than the DENV and YFV VLPs. Our results demonstrate that the VLP neutralization assay maintains the "gold standard" of the classic PRNT; importantly, it shortens the assay time from >10 days to <1 day, and can be performed in biosafety level-2 facility.  相似文献   

5.
采用Ficoll密度梯度离心法(淋巴细胞分离液)分离肾综合征出血热(HFRS)患者外周血单个核细胞(PBMC),并用EB病毒(EBV)感染B淋巴细胞,建立永生化的B淋巴母细胞系(B—LCL)。然后,用含汉滩病毒(Hantaan virus,HTNV)S基因的重组痘苗病毒感染B—LCL,应用问接免疫荧光检测核衣壳蛋白的表达。结果表明,B淋巴细胞经EBV感染4周左右,可形成永生化B—LCL。成功转化后的B—LCL,体积增大,且增殖的淋巴细胞积聚成团。汉滩病毒S基因在B—LCL中能有效表达核衣壳蛋白。含S基因的重组痘苗病毒感染的B—LCL可用作HTNV核衣壳蛋白特异性CTL活性研究的靶细胞。  相似文献   

6.
The prevalence of SARS-CoV-2 variants of concern (VOCs) is still escalating throughout the world. However, the level of neutralization of the inactivated viral vaccine recipients’ sera and convalescent sera against all VOCs, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron) remains to be lack of comparative analysis. Therefore, we constructed pseudoviruses of five VOCs using a lentiviral-based system and analyzed their viral infectivity and neutralization resistance to convalescent and BBIBP-CorV vaccinee serum at different times. Our results show that, compared with the wild-type strain (WT), five VOC pseudoviruses showed higher infection, of which B.1.617.2 and B.1.1.529 variant pseudoviruses exhibited higher infection rates than wild-type or other VOC strains, respectively. Sera from 10 vaccinated individuals at the 1, 3 and 5-month post second dose or from 10 convalescent at 14 and 200 days after discharge retained neutralizing activity against all strains but exhibited decreased neutralization activity significantly against the five VOC variant pseudoviruses over time compared to WT. Notably, 100% (30/30) of the vaccinee serum samples showed more than a 2.5-fold reduction in neutralizing activity against B.1.1.529, and 90% (18/20) of the convalescent serum samples showed more than 2.5-fold reduction in neutralization against B.1.1.529. These findings demonstrate the reduced protection against the VOCs in vaccinated and convalescent individuals over time, indicating that it is necessary to have a booster shot and develop new vaccines capable of eliciting broad neutralization antibodies.  相似文献   

7.
本文应用空斑减少中和试验(PRNT)和细胞病变中和试验(cPENT)两种方法对出血热沙鼠肾细胞灭活疫苗扩大人体免疫后的血清进行中和抗体水平检测。根据两种方法对总计74人份的免疫后血清检测比较结果,两种方法检测的抗体阳转率和抗体水平(GMT)。CPENT法均高于PRNT法,经统计学处理均有显著性差异。不同免疫组的中和抗体水平比较结果,注射三针的阳转率(n=10,100%)高于两针组(n=10,20—30%);接种加氢氧化铝佐剂疫苗(n=13)较接种不加佐剂的两种疫苗(n=26)的抗体水平高,阳转率为92%—100%GMT为22—69;皮下途径(n=15)和肌肉途径(n=13)注射无明显差别,阳转率分别为87—93%和92—100%,GMT分别为29—46和22—61。以上结果进一步肯定沙鼠肾细胞疫苗的人体免疫性  相似文献   

8.
在肾综合征出血热(HFRS)疫苗Vero细胞毒种研制中,将肾综合征出血热(HFRS)病毒PS-6(Ⅰ型)、L99(Ⅱ型)在Vero细胞上连续传代,并对其病毒滴度、免疫原性、传代稳定性等进行检测。结果显示,两株病毒在Vero细胞上传代适应后,病毒滴度达8.5 lgCCID50/m l,免疫原性检查,将病毒灭活制成疫苗免疫家兔的血清中和抗体效价>1:10,其他检测符合规程要求。因此,适应的PS-6(Ⅰ型)和L99(Ⅱ型)毒种可用于制备Vero细胞出血热疫苗。  相似文献   

9.
The lack of reliable, high-throughput tools for characterizing anti-dengue virus (DENV) antibodies in large numbers of serum samples has been an obstacle in understanding the impact of neutralizing antibodies on disease progression and vaccine efficacy. A reporter system using pseudoinfectious DENV reporter virus particles (RVPs) was previously developed by others to facilitate the genetic manipulation and biological characterization of DENV virions. In the current study, we demonstrate the diagnostic utility of DENV RVPs for measuring neutralizing antibodies in human serum samples against all four DENV serotypes, with attention to the suitability of DENV RVPs for large-scale, long-term studies. DENV RVPs used against human sera yielded serotype-specific responses and reproducible neutralization titers that were in statistical agreement with Plaque Reduction Neutralization Test (PRNT) results. DENV RVPs were also used to measure neutralization titers against the four DENV serotypes in a panel of human sera from a clinical study of dengue patients. The high-throughput capability, stability, rapidity, and reproducibility of assays using DENV RVPs offer advantages for detecting immune responses that can be applied to large-scale clinical studies of DENV infection and vaccination.  相似文献   

10.
Japanese encephalitis (JE) viruses are grouped into four genotypes. Although currently available vaccines are derived only from viruses in genotype III, vaccines are known to protect against naturally occurring strains. Studies were undertaken to assess the suitability of a freeze-dried pool of human anti-JE plasma, collected from recipients of Biken (Nakayama-NIH) killed vaccine, to serve as an International Standard for antibodies to JE virus. Five participants in five countries submitted data from 11 assays on the candidate International Standard and seven coded samples including sera from recipients of vaccines containing a range of virus strains. The results of the study indicated that the 50% plaque reduction neutralization test (PRNT(50)titres) obtained for serum from recipients of killed vaccines, including the candidate standard, vary depending on the virus strain used in the neutralization tests, namely higher PRNT(50)titres were obtained when the challenge virus was homologous to the vaccine strain compared to use of a heterologous virus. Potencies expressed relative to the candidate standard are therefore affected by the strain of virus used in assays and the use of a standard would therefore not facilitate direct comparison of data from laboratories that have used different challenge strains.  相似文献   

11.
人源中和性抗汉滩病毒单克隆抗体Fab段基因的获得和表达   总被引:15,自引:5,他引:10  
梁米芳  李德新 《病毒学报》1997,13(4):297-308
运用噬菌体表面表达技术,获得人源和中性抗滩滩病毒汉滩型G1基因工程单克隆抗体Fab段基因及其表达,并同时获得抗汉滩病毒核蛋白的Fab抗体。从能综合征出血热疫区恢复期病人抗凝血中分离到的外周淋巴细胞中,提取了部细胞RNA。通过RT-PCR方法,用一组人IgG Fab基因特异性引物,从合成了cDNA中经PCR扩增了一组轻链和重链Fab段基因,将轻链和重链先后插入噬菌体载体pComb3,dnalf vf  相似文献   

12.
流行性出血热灭活疫苗加强免疫效果观察   总被引:5,自引:0,他引:5  
流行性出血热(EHF)灭活疫苗对初免一年或一年半后的25名志愿者加强免疫1针,未发现局部和全身副反应,可使初免后中和抗体阴性者或初免后阳性转阴者,中和抗体全部阳转,且中和抗体几何平均滴度与初免相比有成倍的增长。表明此疫苗的初免是有效的,即使初免后未检出中和抗体,但对EHF病毒抗原仍具有强烈的回亿反应,因而EHF灭活疫苗加强免疫是十分必要的。  相似文献   

13.
14.
于澜  张亮  张蕾  王芳  刘梓谕  程林峰  薛添  吴兴安  徐志凯  张芳琳 《生物磁学》2013,(30):5811-5816,5824
目的:为进一步研究汉坦病毒包膜糖蛋白的糖基化与病毒的感染性和免疫原性等的关系,构建含有汉滩病毒(HTNV)囊膜糖蛋白(GP)糖基化位点突变体的重组假病毒。方法:利用定点突变的方法,分别突变了HTNV 76-118株的5个N-糖基化位点并克隆入慢病毒表达载体,与包装质粒共转染293T细胞,构建5株重组假病毒。感染HEK293细胞后,进行RT-PCR鉴定及免疫荧光检测。结果:经测序显示构建的含有N-糖基化位点突变体的5个重组假病毒原序列中的天冬酰胺(N)均被置换为谷氨酰胺(Q)。RT-PCR结果显示5个重组假病毒均有HTNV GP基因的表达。免疫荧光检测5个重组假病毒均可表达HTNV的Gn和Gc蛋白。结论:成功构建了含有HTNV包膜糖蛋白糖基化位点突变体的5个重组假病毒,分别命名为rLV-M1、rLV-M2、rLV-M3、rLV-M4和rLV-M5。本研究为明确N-糖基化对汉坦病毒生物学活性的影响提供了有利的研究工具,并为汉坦病毒疫苗及致病机理的进一步研究打下了一定的基础。  相似文献   

15.
Zhang H  Fayad R  Wang X  Quinn D  Qiao L 《Journal of virology》2004,78(19):10249-10257
Mucosal surfaces are the primary portals for human immunodeficiency virus (HIV) transmission. Because systemic immunization, in general, does not induce effective mucosal immune responses, a mucosal HIV vaccine is urgently needed. For this study, we developed papillomavirus pseudoviruses that express HIV-1 Gag. The pseudoviruses are synthetic, nonreplicating viruses, yet they can produce antigens for a long time in the immune system. Here we show that oral immunization of mice by the use of papillomavirus pseudoviruses encoding Gag generated mucosal and systemic Gag-specific cytotoxic T lymphocytes that effectively lysed Gag-expressing target cells. Furthermore, the pseudoviruses generated Gag-specific gamma interferon-producing T cells and serum immunoglobulin G (IgG) and mucosal IgA. In contrast, oral immunization with plasmid DNA encoding HIV-1 Gag did not induce specific immune responses. Importantly, oral immunization with the pseudoviruses induced Gag-specific memory cytotoxic T lymphocytes and protected mice against a rectal mucosal challenge with a recombinant vaccinia virus expressing HIV-1 Gag. Thus, papillomavirus pseudoviruses encoding Gag are a promising mucosal vaccine against AIDS.  相似文献   

16.
Currently, a number of assays measure Orthopoxvirus neutralization with serum from individuals, vaccinated against smallpox. In addition to the traditional plaque reduction neutralization test (PRNT), newer higher throughput assays are based on neutralization of recombinant vaccinia virus, expressing reporter genes such as β-galactosidase or green fluorescent protein. These methods could not be used to evaluate neutralization of variola virus, since genetic manipulations of this virus are prohibited by international agreements. Currently, PRNT is the assay of choice to measure neutralization of variola virus. However, PRNT assays are time consuming, labor intensive, and require considerable volume of serum sample for testing. Here, we describe the development of a high-throughput, cell-based imaging assay that can be used to measure neutralization, and characterize replication kinetics of various Orthopoxviruses, including variola, vaccinia, monkeypox, and cowpox.  相似文献   

17.
The worldwide outbreak of the swine-origin 2009 H1N1 influenza A virus (IAV) and an increasing number of influenza cases caused by a highly pathogenic avian influenza (HPAI) H5N1 have accelerated the need to develop vaccines and antiviral agents against IAVs. Among various antivirals, neutralizing monoclonal antibodies (mAbs) are considered important passive therapeutics having an immediate effect against viral pathogens. Here we report a pseudovirus neutralization assay for rapid screening of neutralizing mAbs targeting hemagglutinin (HA) of H5N1 and H1N1 IAV. In this study, we generated six pseudoviruses with an HIV-1 backbone, respectively, expressing HA of four clades of H5N1 IAV and the 2009 epidemic H1N1 IAV. The resulting pseudoviruses were able to infect a variety of human and non-human cells, with 293T cells from human kidney as the most susceptible target cells. Using the established pseudovirus neutralization assay, we showed that three of ten selected mAbs specific to HA could potently neutralize infection of a pseudovirus bearing HA from the homologous IAV A/VietNam/1194/2004(H5N1) strain. This was highly consistent with the result of a microneutralization assay testing the same strain of a live IAV. Since the pseudovirus neutralization assay does not involve an infectious virus and can be performed without the requirement of a biosafety-3 laboratory, it may be applied for safe and rapid screening of neutralizing mAbs and antiviral agents targeting HA of IAVs.  相似文献   

18.
We previously reported that a conformational epitope-specific monoclonal antibody (mAb; #1-46-12) neutralized the rabies virus by binding only a small number (less than 20) of the antibody molecules per virion, while a linear epitope-specific mAb (#7-1-9) required more than 250 IgG molecules for the neutralization. We also isolated both the epitope-negative (R-31) and-positive (R-61) escape mutants that resisted mAb #1-46-12. Co-infection studies with wild type (wt) and R-61 mutant have shown that although the infectivity of R-61 mutant was not affected by the binding of about 300 IgG molecules per virion, incorporation of a small number of wt G protein into the R-61 virion resulted in dramatic loss of the resistance. In this study, we further investigated properties of the mutant G proteins. The R-61 G protein lost reactivity to the mAb when solubilized, even keeping a trimer form, suggesting that membrane-anchorage is essential for the maintenance of its epitope-positive conformation. On the other hand, incorporation of wt G proteins into the R-31 virions did not affect their resistance to the mAb very much. Although we have not so far found the presumed conformational changes induced by the mAb-binding, we think that these results are not inconsistent with our previously proposed novel model (referred to as a domino effect model) for the virus neutralization by mAb #1-46-12 other than a classical spike-blocking model, which implicates successive spreading of the postulated antibody-induced conformational changes of G protein to the neighboring spikes until abolishing the host cell-binding ability of the virion.  相似文献   

19.
Immunity to poliomyelitis is largely dependent on humoral neutralizing antibodies, both after natural (wild virus or vaccine) infection and after inactivated poliovirus vaccine inoculation. Although the production of local secretory immunoglobulin A (IgA) antibody in the gut mucosa may play a major role in protection, most of information about the antigenic determinants involved in neutralization of polioviruses derives from studies conducted with humoral monoclonal antibodies (MAbs) generated from parenterally immunized mice. To investigate the specificity of the mucosal immune response to the virus, we have produced a library of IgA MAbs directed at Sabin type 1 poliovirus by oral immunization of mice with live virus in combination with cholera toxin. The epitopes recognized by 13 neutralizing MAbs were characterized by generating neutralization-escape virus mutants. Cross-neutralization analysis of viral mutants with MAbs allowed these epitopes to be divided into four groups of reactivity. To determine the epitope specificity of MAbs, virus variants were sequenced and the mutations responsible for resistance to the antibodies were located. Eight neutralizing MAbs were found to be directed at neutralization site N-AgIII in capsid protein VP3; four more MAbs recognized site N-AgII in VP1 or VP2. One IgA MAb selected a virus variant which presented a unique mutation at amino acid 138 in VP2, not previously described. This site appears to be partially related with site N-AgII and is located in a loop region facing the VP2 N-Ag-II loop around residue 164. Only 2 of 13 MAbs proved able to neutralize the wild-type Mahoney strain of poliovirus. The IgA antibodies studied were found to be produced in the dimeric form needed for recognition by the polyimmunoglobulin receptor mediating secretory antibody transport at the mucosal level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号