首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Many flaviviruses are emerging and reemerging pathogens, such as West Nile virus (WNV), dengue virus (DENV), yellow fever virus (YFV), and Japanese encephalitis virus. Serological assay is the dominant method for diagnosis of flavivirus infections in human. Because antibodies generated during flavivirus infections cross-react with other flavivirus members, plaque reduction neutralization test (PRNT) is the only available assay to determine the infecting flavivirus type.Since PRNT requires culturing raw viruses, it must be performed in biosafety level-3 or level-4 containment for many flaviviruses, and takes more than ten days to complete. To overcome these problems, we have developed flavivirus viral-like particles (VLPs) that could be used to replace raw viruses in the neutralization assay. The VLPs were prepared by trans packaging a luciferase-reporting replicon with viral structural proteins. This novel assay involves three simple steps: (ⅰ) VLPs from a panel of flaviviruses are incubated with flavivirus-infected sera at 37℃ for 1 h; (ⅱ)the neutralized VLPs are used to infect Vero cells; and (ⅲ) the infected cells are measured for luciferase activities at 22 h post-infection. The virus type whose VLP is most efficiently neutralized by the serum specimen (as quantified by the luciferase activities) is the etiologic agent. As a proof-of-concept, we show that a WNV-infected mouse serum neutralized the WNV VLP more efficiently and selectively than the DENV and YFV VLPs. Our results demonstrate that the VLP neutralization assay maintains the "gold standard" of the classic PRNT; importantly, it shortens the assay time from >10 days to <1 day, and can be performed in biosafety level-2 facility.  相似文献   

2.
The smallpox vaccine is the prototypic vaccine, yet the viral targets critical for vaccine-mediated protection remain unclear in humans. We have produced protein microarrays of a near-complete vaccinia proteome and used them to determine the major antigen specificities of the human humoral immune response to the smallpox vaccine (Dryvax). H3L, an intracellular mature virion envelope protein, was consistently recognized by high-titer antibodies in the majority of human donors, particularly after secondary immunization. We then focused on examining H3L as a valuable human antibody target. Purified human anti-H3L antibodies exhibited substantial vaccinia virus-neutralizing activity in vitro (50% plaque reduction neutralization test [PRNT50] = 44 microg/ml). Mice also make an immunodominant antibody response to H3L after vaccination with vaccinia virus, as determined by vaccinia virus protein microarray. Mice were immunized with recombinant H3L protein to examine H3L-specific antibody responses in greater detail. H3L-immunized mice developed high-titer vaccinia virus-neutralizing antibodies (mean PRNT50 = 1:3,760). Importantly, H3L-immunized mice were subsequently protected against lethal intranasal challenges with 1 or 5 50% lethal doses (LD50) of pathogenic vaccinia virus strain WR, demonstrating the in vivo value of an anti-H3L response. To formally demonstrate that neutralizing anti-H3L antibodies are protective in vivo, we performed anti-H3L serum passive-transfer experiments. Mice receiving H3L-neutralizing antiserum were protected from a lethal challenge with 3 LD50 of vaccinia virus strain WR (5/10 versus 0/10; P < 0.02). Together, these data show that H3L is a major target of the human anti-poxvirus antibody response and is likely to be a key contributor to protection against poxvirus infection and disease.  相似文献   

3.
目的:制备表达绿色荧光蛋白的重组痘苗病毒,并初步探讨其应用。方法:构建制备表达绿色荧光蛋白的重组痘苗病毒RVJ11LacZ-I1LGFP;分别利用药物昔多福韦与抗痘苗病毒高效价免疫血清,建立基于该病毒的荧光生成抑制实验及荧光减数中和实验。结果:荧光生成抑制实验与传统的噬斑生成抑制实验相比,结果一致,但判读更直接快速;重组痘苗病毒RVJ11LacZ-I1LGFP亦可用于体外快速高通量评价正痘病毒疫苗的中和能力。结论:利用表达绿色荧光蛋白的重组痘苗病毒建立了直接简便快速高通量的抗痘病毒药物筛选及体外中和评价技术。  相似文献   

4.
The detection of neutralizing antibodies against vaccinia virus is a valuable tool for the investigation of previous smallpox vaccination. Compulsory smallpox vaccination ended in Brazil during the early 1970s, although the vaccine was available until the late 1970s. The threat of smallpox as a biological weapon has called the attention of public health authorities to the need for an evaluation of the immune status of the population. Based on our previous experience with a micro plaque reduction neutralization test (PRNT) for the evaluation of yellow fever immunity, a similar test was developed for the detection and quantification of vaccinia neutralizing antibodies. A cross-sectional study to test the repeatability and validity of plaque reduction neutralization test (PRNT) for vaccinia antibodies was performed in 182 subjects divided into two categories: subjects above 31 years old and the other > or = 35 years old. Cases were subjects considered to have been vaccinated with vaccinia virus if they declared vaccination history or evidenced vaccination marks. The assay is carried out in 96-well plates, provides results within 30 h, is easily performed, has good sensitivity (92.7%) and specificity (90.8), excellent repeatability (ICC 0.89 (0.88; 0.92)) and is thus suitable for use in mass screening of a population's antibody levels.  相似文献   

5.
The capacity of human sera genetically deficient in selective complement (C) components to enhance neutralization of enveloped viruses was examined by kinetic plaque reduction assays. Vaccinia virus, a DNA virus, and vesicular stomatitis virus (VSV), an RNA virus, were studied. Exogenous rabbit: or human antibody to vaccinia virus, and guinea pig or human antibody to VSV were provided in limiting, C-dependent concentrations. IgG antibodies predominated in most of the antisera employed. C5-deficient and C6-deficient human sera consistently supported normal rates of neutralization of either virus; this effect was heat-labile. C4-deficient human serum did hot exceed heat-inactivated serum in any neutralization assay. C1r-deficient serum displayed slight heat-labile neutralizing capacity against vaccinia but none against VSV. C2- and C3-deficient sera consistently exhibited measurable but clearly subnormal rates of neutralization. Two fresh agammaglobulinemic sera failed to inactivate either virus in the absence of added antibody. These results confirm and extend earlier evidence, based on neutralization of herpes simplex and Newcastle disease viruses in the presence of early (IgM) antibody and functionally pure guinea pig C components or C-deficient animal sera, that the late-acting components C5-C9 are not required for C-dependent neutralization. Data on four enveloped viruses now agree that this function is mediated by C1-C3, although C1 plus C4 appear to have some neutralizing capacity. This requirement for C1-C3 is overcome, however, in the presence of higher antibody cohcentrations, suggesting that the contribution of the C system to viral neutralization in vivo may be chiefly in the early phase of infection when antibody is limited.  相似文献   

6.
Japanese encephalitis (JE) viruses are grouped into four genotypes. Although currently available vaccines are derived only from viruses in genotype III, vaccines are known to protect against naturally occurring strains. Studies were undertaken to assess the suitability of a freeze-dried pool of human anti-JE plasma, collected from recipients of Biken (Nakayama-NIH) killed vaccine, to serve as an International Standard for antibodies to JE virus. Five participants in five countries submitted data from 11 assays on the candidate International Standard and seven coded samples including sera from recipients of vaccines containing a range of virus strains. The results of the study indicated that the 50% plaque reduction neutralization test (PRNT(50)titres) obtained for serum from recipients of killed vaccines, including the candidate standard, vary depending on the virus strain used in the neutralization tests, namely higher PRNT(50)titres were obtained when the challenge virus was homologous to the vaccine strain compared to use of a heterologous virus. Potencies expressed relative to the candidate standard are therefore affected by the strain of virus used in assays and the use of a standard would therefore not facilitate direct comparison of data from laboratories that have used different challenge strains.  相似文献   

7.
The lack of reliable, high-throughput tools for characterizing anti-dengue virus (DENV) antibodies in large numbers of serum samples has been an obstacle in understanding the impact of neutralizing antibodies on disease progression and vaccine efficacy. A reporter system using pseudoinfectious DENV reporter virus particles (RVPs) was previously developed by others to facilitate the genetic manipulation and biological characterization of DENV virions. In the current study, we demonstrate the diagnostic utility of DENV RVPs for measuring neutralizing antibodies in human serum samples against all four DENV serotypes, with attention to the suitability of DENV RVPs for large-scale, long-term studies. DENV RVPs used against human sera yielded serotype-specific responses and reproducible neutralization titers that were in statistical agreement with Plaque Reduction Neutralization Test (PRNT) results. DENV RVPs were also used to measure neutralization titers against the four DENV serotypes in a panel of human sera from a clinical study of dengue patients. The high-throughput capability, stability, rapidity, and reproducibility of assays using DENV RVPs offer advantages for detecting immune responses that can be applied to large-scale clinical studies of DENV infection and vaccination.  相似文献   

8.
We previously reported the development of a neutralization assay system for evaluating Japanese Encephalitis Virus (JEV) neutralizing antibody (NAb) using pseudotyped-JEV (JEV-PV). JEV-PV-based neutralization assay offers several advantages compared with the current standard plaque-reduction neutralization test (PRNT), including simplicity, safety, and speed. To evaluate the suitability of the JEV-PV assay as new replacement neutralization assay, we compared its repeatability, reproducibility, specificity, and correlated its results with those obtained using the PRNT. These analyses showed a close correlation between the results obtained with the JEV-PV assay and the PRNT, using the 50% plaque reduction method as a standard for measuring NAb titers to JEV. The validation results met all analytical acceptance criteria. These results suggest that the JEV-PV assay could serve as a safe and simple method for measuring NAb titer against JEV and could be used as an alternative approach for assaying the potency of JEV neutralization.  相似文献   

9.

Background

Accurate determination of neutralization antibody titers supports epidemiological studies of dengue virus transmission and vaccine trials. Neutralization titers measured using the plaque reduction neutralization test (PRNT) are believed to provide a key measure of immunity to dengue viruses, however, the assay''s variability is poorly understood, making it difficult to interpret the significance of any assay reading. In addition there is limited standardization of the neutralization evaluation point or statistical model used to estimate titers across laboratories, with little understanding of the optimum approach.

Methodology/Principal Findings

We used repeated assays on the same two pools of serum using five different viruses (2,319 assays) to characterize the variability in the technique under identical experimental conditions. We also assessed the performance of multiple statistical models to interpolate continuous values of neutralization titer from discrete measurements from serial dilutions. We found that the variance in plaque reductions for individual dilutions was 0.016, equivalent to a 95% confidence interval of 0.45–0.95 for an observed plaque reduction of 0.7. We identified PRNT75 as the optimum evaluation point with a variance of 0.025 (log10 scale), indicating a titer reading of 1∶500 had 95% confidence intervals of 1∶240–1∶1000 (2.70±0.31 on a log10 scale). The choice of statistical model was not important for the calculation of relative titers, however, cloglog regression out-performed alternatives where absolute titers are of interest. Finally, we estimated that only 0.7% of assays would falsely detect a four-fold difference in titers between acute and convalescent sera where no true difference exists.

Conclusions

Estimating and reporting assay uncertainty will aid the interpretation of individual titers. Laboratories should perform a small number of repeat assays to generate their own variability estimates. These could be used to calculate confidence intervals for all reported titers and allow benchmarking of assay performance.  相似文献   

10.
Antibody-mediated neutralization of human immunodeficiency virus type 1 (HIV-1) was evaluated with primary isolates and sera from infected individuals, using human peripheral blood mononuclear cells (PBMC) activated with phytohemagglutinin 1 day after virus inoculation (resting-cell assay) or 2 days prior to virus inoculation (blast assay). Assays were performed exclusively with syncytium-inducing (SI) isolates since non-SI isolates replicated poorly or not at all in the resting-cell assay. Ninety percent neutralization was difficult to achieve in both assays for most virus-serum combinations tested. Of particular note, virus replication in the absence of antibody was delayed 2 to 3 days in the resting-cell assay. At least part of this delay was due to a decrease in virus infectivity; the 50% tissue culture infectious dose of primary isolates was 25 to 30 times lower in the resting-cell assay than in the PBMC blast assay. When a broadly neutralizing serum and the same dilution of virus were used in both assays, neutralization was greater in the resting-cell assay than in the blast assay on day 7, but neutralization was equal in both assays when measurements were made 3 days sooner in the PBMC blast assay. Both assays had the same level of detection on day 7 when the amount of virus mixed with antibody and added to cells was standardized according to infectivity for the respective target cells. Thus, when the infectious dose was adjusted, the two assays were equally sensitive for detecting antibody-mediated neutralization of primary isolates of HIV-1. These results indicate that primary isolates of HIV-1 are difficult to neutralize in both assays and that the detection of neutralization is not affected by the initial activation state of PBMC.  相似文献   

11.
检测流行性出血热病毒滴度和中和抗体效价的半微量空斑法   总被引:21,自引:0,他引:21  
建立了检测流行性出血热病毒滴度和中和抗体效价的半微量空斑法。小牛血清与胎牛血清的培养效果无差异。7株不同来源的出血热病毒均能在E6细胞上形成空斑。接种的病毒浓度与形成的空斑数呈直线关系。用空斑法测得的病毒滴度稍低于荧光TCIE50滴定法。空斑减少中和试验的敏感性较荧光中和试验高30倍左右。同时还初步表明了本方法可用于流行性出血热病毒的抗原性分析。  相似文献   

12.
CD8(+) T lymphocytes have been shown to be involved in controlling poxvirus infection, but no protective cytotoxic T-lymphocyte (CTL) epitopes are defined for variola virus, the causative agent of smallpox, or for vaccinia virus. Of several peptides in vaccinia virus predicted to bind HLA-A2.1, three, VETFsm(498-506), A26L(6-14), and HRP2(74-82), were found to bind HLA-A2.1. Splenocytes from HLA-A2.1 transgenic mice immunized with vaccinia virus responded only to HRP2(74-82) at 1 week and to all three epitopes by ex vivo enzyme-linked immunosorbent spot (ELISPOT) assay at 4 weeks postimmunization. To determine if these epitopes could elicit a protective CD8(+) T-cell response, we challenged peptide-immunized HLA-A2.1 transgenic mice intranasally with a lethal dose of the WR strain of vaccinia virus. HRP2(74-82) peptide-immunized mice recovered from infection, while na?ve mice died. Depletion of CD8(+) T cells eliminated protection. Protection of HHD-2 mice, lacking mouse class I major histocompatibility complex molecules, implicates CTLs restricted by human HLA-A2.1 as mediators of protection. These results suggest that HRP2(74-82), which is shared between vaccinia and variola viruses, may be a CD8(+) T-cell epitope of vaccinia virus that will provide cross-protection against smallpox in HLA-A2.1-positive individuals, representing almost half the population.  相似文献   

13.
目的:天花、猴痘可感染人并引起严重皮疹、发热等临床症状,均为烈性传染病,是潜在的生物恐怖因子,因此需要建立针对其感染的快速特异的诊断方法。方法:分别设计正痘病毒属通用型、天花病毒特异、猴痘病毒特异的引物与荧光标记探针,建立荧光定量实时PCR方法,对人工合成或模拟样本进行检测。结果:可在4h内对天花或猴痘病毒感染进行特异性鉴别诊断,检测灵敏度可达100拷贝/25μL反应体积。结论:本方法可作为一种检疫与反恐应急储备技术。  相似文献   

14.
Vaccinia virus induction of a metabolic activity in host cell cultures forms the basis of a new assay for neutralizing antibodies. A direct relationship between the amount of vaccinia virus infecting cell cultures and the induced incorporation of tritium-labeled thymidine into the acid-insoluble fraction of the cells provided an indicator system. A liquid scintillation spectrometer was used to determine radioactivity associated with cell materials, and it provided a method for partial automation of an immunological procedure. Reproducibility of the method was satisfactory, and agreement with conventional vaccinia serum neutralization tests was demonstrated.  相似文献   

15.
16.
Variola virus, the causative agent of smallpox, encodes approximately 200 proteins. Over 80 of these proteins are located in the terminal regions of the genome, where proteins associated with host immune evasion are encoded. To date, only two variola proteins have been characterized. Both are located in the terminal regions and demonstrate immunoregulatory functions. One protein, the smallpox inhibitor of complement enzymes (SPICE), is homologous to a vaccinia virus virulence factor, the vaccinia virus complement-control protein (VCP), which has been found experimentally to be expressed early in the course of vaccinia infection. Both SPICE and VCP are similar in structure and function to the family of mammalian complement regulatory proteins, which function to prevent inadvertent injury to adjacent cells and tissues during complement activation. The second variola protein is the variola virus high-affinity secreted chemokine-binding protein type II (CKBP-II, CBP-II, vCCI), which binds CC-chemokine receptors. The vaccinia homologue of CKBP-II is secreted both early and late in infection. CKBP-II proteins are highly conserved among orthopoxviruses, sharing approximately 85% homology, but are absent in eukaryotes. This characteristic sets it apart from other known virulence factors in orthopoxviruses, which share sequence homology with known mammalian immune regulatory gene products. Future studies of additional variola proteins may help illuminate factors associated with its virulence, pathogenesis and strict human tropism. In addition, these studies may also assist in the development of targeted therapies for the treatment of both smallpox and human immune-related diseases.  相似文献   

17.
CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).  相似文献   

18.

Background

A vaccine is needed to control the spread of human immunodeficiency virus type 1 (HIV-1). An in vitro assay that can predict the protection induced by a vaccine would facilitate the development of such a vaccine. A potential candidate would be an assay to quantify neutralization of HIV-1.

Methods and Findings

We have used sera from rhesus macaques that have been immunized with HIV candidate vaccines and subsequently challenged with simian human immunodeficiency virus (SHIV). We compared neutralization assays with different formats. In experiments with the standardized and validated TZMbl assay, neutralizing antibody titers against homologous SHIVSF162P4 pseudovirus gave a variable correlation with reductions in plasma viremia levels. The target cells used in the assays are not just passive indicators of virus infection but are actively involved in the neutralization process. When replicating virus was used with GHOST cell assays, events during the absorption phase, as well as the incubation phase, determine the level of neutralization. Sera that are associated with protection have properties that are closest to the traditional concept of neutralization: the concentration of antibody present during the absorption phase has no effect on the inactivation rate. In GHOST assays, events during the absorption phase may inactivate a fixed number, rather than a proportion, of virus so that while complete neutralization can be obtained, it can only be found at low doses particularly with isolates that are relatively resistant to neutralization.

Conclusions

Two scenarios have the potential to predict protection by neutralizing antibodies at concentrations that can be induced by vaccination: antibodies that have properties close to the traditional concept of neutralization may protect against a range of challenge doses of neutralization sensitive HIV isolates; a window of opportunity also exists for protection against isolates that are more resistant to neutralization but only at low challenge doses.  相似文献   

19.
本文应用微量细胞病变中和试验(MCPENT)对我国22株不同来源的流行性出血热病毒(EHFV)进行血清分型研究结果除一株具有广谱抗原性外,所有毒株均可准确地被分为血清1型和血清2型,其分型结果与用空斑减少中和试验(PRNT)完全一致。此外,MCPENT法还能对不同流行区EHF病人血清进行分型诊断。此法简便、经济、准确可靠,便于推广应用。  相似文献   

20.
Regulation of complement activation by pathogens and the host are critical for survival. Using two highly related orthopoxvirus proteins, the vaccinia and variola (smallpox) virus complement control proteins, which differ by only 11 aa, but differ 1000-fold in their ability to regulate complement activation, we investigated the role of electrostatic potential in predicting functional activity. Electrostatic modeling of the two proteins predicted that altering the vaccinia virus protein to contain the amino acids present in the second short consensus repeat domain of the smallpox protein would result in a vaccinia virus protein with increased complement regulatory activity. Mutagenesis of the vaccinia virus protein confirmed that changing the electrostatic potential of specific regions of the molecule influences its activity and identifies critical residues that result in enhanced function as measured by binding to C3b, inhibition of the alternative pathway of complement activation, and cofactor activity. In addition, we also demonstrate that despite the enhanced activity of the variola virus protein, its cofactor activity in the factor I-mediated degradation of C3b does not result in the cleavage of the alpha' chain of C3b between residues 954-955. Our data have important implications in our understanding of how regulators of complement activation interact with complement, the regulation of the innate immune system, and the rational design of potent complement inhibitors that might be used as therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号