首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
苹果果实发育期间细胞壁组分变化特性   总被引:6,自引:0,他引:6  
以 '富士'、'国光'、'红星'、'金冠'和'嘎拉'5个苹果品种为试材,分析了果实发育成熟过程细胞壁物质(CWM)、水溶性果胶(WSP)、共价结合果胶(CSP)、离子结合果胶(ISP)、纤维素及半纤维素各组分变化.结果表明:在苹果果实发育过程中,5个品种果实CWM含量变化均呈先升后降的变化规律,均以果实膨大期为其含量下降的转折点;果实总果胶含量均呈不断降低的趋势,其中CSP为主导成分,'富士'和'国光'果实CSP含量最高,WSP含量最低,'嘎拉'与'红星'果实3种果胶含量变化居中,'金冠'果实总果胶含量最低且变化小,但在近成熟期'红星'和'金冠'果实WSP呈明显的上升趋势.果实半纤维素含量也具相似的变化规律,'国光'、'富士'和'金冠'等3个品种的高峰值显著高于'嘎拉'和'红星';比较5个品种纤维素含量,'国光'果实在成熟期之前显著高于其他4品种,而其他4品种的纤维素含量变化比较平稳.  相似文献   

2.
“大红袍”和“解放钟”枇杷果实在 1℃下贮藏时 ,细胞壁物质代谢异常 ,果肉硬度持续升高而出汁率逐渐降低 ,果胶酯酶 (PE)和多聚半乳糖醛酸酶 (PG)活性和水溶性果胶含量下降 ,原果胶含量、苯丙氨酸解氨酶(PAL)活性及木质素和纤维素含量不断增加。约经 3周贮藏后 ,果实出现果皮难剥、果肉质地变硬、粗糙少汁的异常劣变现象。在 12℃下贮藏的枇杷果实 ,细胞壁物质代谢正常 ,果肉硬度增加少 ,PE和PG活性及水溶性果胶含量较高 ,无原果胶增加现象 ,PAL活性呈下降趋势 ,木质素和纤维素含量变化不大 ,果实不出现木质化败坏。这些结果表明冷藏枇杷的木质化败坏可能是一种低温失调现象  相似文献   

3.
比较桃品种‘双久红’和‘川中岛白桃’果实成熟前后20 d内果肉硬度、细胞壁成分和细胞壁降解酶活性变化的结果表明,桃果实成熟5 d后,‘双久红’桃果实的硬度、纤维素含量和原果胶含量均极显著高于‘川中岛白桃’:从成熟前15 d开始,‘双久红’的水溶性果胶含量、多聚半乳糖醛酸酶活性和纤维素酶活性均极显著低于‘川中岛白桃’;整个成熟期间,‘双久红’的果胶甲酯酶活性明显低于‘川中岛白桃’。相关分析表明,果实硬度与原果胶、纤维素含量呈极显著正相关,而与可溶性果胶含量、多聚半乳糖醛酸酶活性和纤维素酶活性呈极显著负相关。  相似文献   

4.
裂果易发性不同的荔枝品种果皮中细胞壁代谢酶活性的比较   总被引:30,自引:0,他引:30  
“糯米糍”荔枝裂果率极显著高于“淮枝”,前者果皮中的果胶酶、纤维素酶和果胶甲酯酶的活性高于后者,其中以果胶酶活性差异最明显,其次是纤维素酶,果胶甲酯酶差异最小;“糯米糍”细胞壁结合型的过氧化物酶(POD)和多酚氧化酶(PP0)活性明显高于“淮枝”,而水溶性POD和PP0的活性则两个品种间无明显差异。据此认为,果皮细胞壁水解酶活性以及细胞壁结合型的POD和PPO的活性高的荔枝品种,其裂果率也高。文章对细胞壁代谢相关酶类在果皮抗裂性形成中的作用进行了讨论。  相似文献   

5.
以丰香和红丰草莓为试材,对果实发育成熟过程中细胞壁水解酶活性和细胞壁成份变化进行了研究.结果表明:半乳糖苷酶和α-甘露糖苷酶活性随草莓果实成熟而提高,葡萄糖苷酶活性不随草莓果实成熟而提高.随着果实发育成熟,纤维素酶活性、果胶酶活性不断提高.果实中未检测到内切多聚半乳糖醛酸酶活性,外切多聚半乳糖醛酸酶活性变化不随果实成熟软化而提高.随果实发育成熟,细胞壁中可溶性果胶和半纤维素增加,而离子结合果胶和共价结合果胶及纤维素减少.  相似文献   

6.
非生物胁迫下植物细胞壁组分变化   总被引:9,自引:0,他引:9  
植物细胞壁主要由纤维素、半纤维素、果胶、木质素和糖蛋白组成,其在植物生长中主要起结构支持、物质运输和抵御逆境的作用.植物生长在受到各种环境信号影响后,细胞壁特性会发生很大改变.这些环境信号也会改变细胞壁组分的含量和结构,从而改变细胞壁机械特性.这种细胞壁的改变可以认为是植物对环境胁迫的响应.本文主要综述在非生物环境胁迫下,包括水分亏缺、低温胁迫、重金属胁迫和增强UV-B辐射下细胞壁多糖含量和结构,细胞壁结构蛋白和细胞壁相关酶活性,以及分布在细胞间隙的小分子物质的响应和机制,结合近年来细胞壁相关基因水平、基因组水平和蛋白组水平方面的研究结果,讨论了今后该领域的研究方向.  相似文献   

7.
研究PEG模拟水分胁迫条件对玉米叶肉细胞超微结构的影响,探讨了超微结构的变化与保护酶活性及膜酯过氧化伤害之间的关系。试验表明,在水分胁迫初期,叶肉细胞超微结构变化较小,此时,叶片的SOD及过氧化氢酶活性明显升高,质膜相对透性和丙二醛含量增加缓慢,随着胁迫时间的延长,叶肉细胞超微结构破坏加重,且不同细胞对水分胁迫的敏感性相差很大,叶片CAT性下降,质膜透性和MDA含量急增;复水后,叶片超微结构,SO  相似文献   

8.
枇杷冷藏过程中果肉木质化与细胞壁物质变化的关系   总被引:50,自引:1,他引:49  
“大红袍”和“解放钟”枇杷果实在1℃下贮藏时,细胞壁物质代谢异常,果肉硬度升高而出汁率逐渐降低,果胶酯酶(PE)和多聚半乳糖醛酸酶(PG)活笥和水溶性果胶含量下降,原果胶含量、苯丙氨酸解氨酶(PAL)活性及木质素和纤维含量不断增加。约经3周贮藏后,果实出现果皮难剥、果肉质地变硬、粗糙少汁的异常劣变现象。在12℃下贮藏的枇杷果实,细胞壁物质代谢正常,果肉硬度增加少,PE和PG活性及水溶性果胶含量较遍  相似文献   

9.
柿果实采后软化过程中细胞壁组分代谢和超微结构的变化   总被引:17,自引:0,他引:17  
柿果实采后果胶酯酶活性迅速上升,其活性与果实硬度的下降呈明显的负相关。多聚半乳糖醛酸酶活性增加缓慢,但其活性与果实硬度的下降无明显相关性。β-半乳糖苷酶活性迅速增加,其活性与果实硬度的下降呈明显的负相关。纤维素酶活性呈逐渐上升趋势,与果实硬度的下降也呈明显的负相关。伴随着细胞壁水解酶活性的增加,果实原果胶和纤维素含量迅速下降,而水溶性果胶含量则迅速上升。柿果刚采收时细胞壁结构完整,3d后细胞壁中胶层基本被溶解,甚至初生壁也局部发生降解。  相似文献   

10.
以酿酒葡萄品种‘霞多丽’为试验材料,采用石蜡切片与CFDA荧光染色观察日灼果皮细胞结构与细胞活性变化,同时测定日灼发生后葡萄果实品质及相关生理指标变化,以揭示日灼对果实品质与细胞结构的影响。结果表明:(1)随着葡萄日灼病加重,果实表皮颜色由浅黄色逐渐加深,后期甚至出现细胞坏死。(2)果实发生日灼后,果实硬度与含水量下降,细胞壁含量增加,果皮从外向内第1~3层细胞明显变小,细胞壁增厚。(3)随着日灼病加重,果皮细胞破裂,且破裂数量增加,细胞活性也随之下降,果皮保护功能逐渐丧失,果肉细胞逐渐失水导致了果实皱缩;重度日灼果实周缘维管束木质部导管受到果皮细胞失水断裂的影响,出现断裂变形。(4)在葡萄果实日灼发生过程中,受到高温与强光照胁迫影响,同时伴随着水分散失增加,果实可溶性固形物含量和总糖含量增加,但有机酸含量降低,糖酸比随之增加;以上各品质指标值的大小与果实水分含量密切相关。研究发现,日灼引起了葡萄果实结构变化与生理代谢的紊乱,随着日灼程度加重,果皮细胞逐渐死亡,果实内水分大量散失,果实糖含量增加,严重影响了葡萄果实的外观和内在品质。  相似文献   

11.
White spruce [ Picea glauca (Moench) Voss] seedlings were preconditioned by subjecting them to 3 cycles of a mild drought stress. After 1 week of stress relief their water status, soluble carbohydrate content and cell wall composition in newly formed needles were examined and compared with those in control seedlings. Both preconditioned and control seedlings were subsequently subjected to a severe drought stress and again analyzed. Preconditioning treatment both before and during subsequent stress exposure lowered osmotic potentials at full hydration, and after the loss of turgor, decreased lignin content and increased hemicellulose content of the cell walls. Severe drought had similar but more drastic effects on seedling water relations, sugar accumulation and cell wall hemicellulose content; it also decreased cell wall pectin levels. The decrease in pectin levels was accompanied by a loss of galactose and glucose from pectic substances. Little change in cellulose content was observed as a result of preconditioning and severe drought.  相似文献   

12.
Cracking, a serious problem in many fruits, may cause significant economic losses. It may occur when internal pressure cannot sustain by the epidermis any longer. Water absorption and epidermis are among the most important factors that associated with cracking. To determine whether pericarp composition and its mechanical performance, endogenous cell wall disassembly, and water-absorbing capacity influences tomato fruit cracking, we grew a cracking-resistant genotype ‘LA1698’ and susceptible genotype ‘LA2683’. The results illustrated that the cuticle and subcutaneous layer were thicker in ‘LA1698’ than in ‘LA2683’. Compared with ‘LA2683’, the fruit firmness, consistency, and bursting strength of ‘LA1698’ were all higher. Fruits of ‘LA1698’ had decreased activities of polygalacturonase, β-galactosidase, and cellulose, which can disassemble the polysaccharide network. As a result, it had reduced water-soluble pectin and more covalently and ionically bound pectin that can crosslink with Ca2+ and B. These fruits also have a greater abundance of hemicelluloses. In addition, ‘LA1698’ had higher SOD activities and lower relative conductivity, meaning its cells might have a better biological activity to resist changes of the external environment (such as water variation) and to prevent fruit cracking. However, POD in ‘LA2683’ was more abundant than in ‘LA1698’. ‘LA1698’ produced juice with lower total soluble solids, which led to a lower initial water-absorbing ability and difference between the exocarp and mesocarp. In conclusion, a stronger pericarp and cells with a better biological activity in addition to the lower water-absorbing difference between the exocarp and mesocarp made ‘LA1698’ more resistant to cracking.  相似文献   

13.
Peaches (Prunus persica cv. Hermoza) were stored at 0C in regular air (RA) or in controlled atmosphere (CA 10% CO2, 3% O2) for 4 weeks and then ripened for 4 days at 20 degrees C. Woolliness developed in the regular air stored fruit while the controlled atmosphere stored fruit ripened normally. In the woolly fruit symptoms of the disorder were greater in the inner mesocarp than in the outer. Polygalacturonase (PG) and pectin esterase (PE) activities differed in the outer and inner mesocarp of the affected fruit. PG activity was low and PE activity was high in the inner mesocarp of the woolly fruit during ripening relative to the outer mesocarp, while in the healthy fruit, activities were similar in both areas. Cell wall fractions of water-soluble, CDTA-soluble and carbonate-soluble pectins were prepared from freshly harvested peaches and incubated with PE and PG from ripe peaches at different ratios. Only the CDTA-soluble fraction formed a gel with peach enzymes, and the rate of gelation increased with increasing amounts of PE relative to PG. Both water-soluble and CDTA-soluble pectin fractions formed gels with commercial PE (extracted from orange peel). The PE extracted from peaches was stable when stored at 0 degrees C for 9 days, while PG activity was stable only for 1 day. We suggest that PE, acting on pectins in the cell wall in vivo may cause gel formation and that the CDTA-soluble polymers have the capacity to bind apoplastic water and create the dry appearance observed in woolly fruit.  相似文献   

14.
桃果实在成熟过程中细胞壁干物质不断减少,随着共价结合果胶质和离子结合果胶质减少,水溶性果胶质明显增加,纤维素也逐渐减少,但半纤维素含量变化较小.低温胁迫造成果胶质和纤维素的降解过程受阻,从而造成较高分子量果胶质的积累,果汁粘度升高.中途加温则能促进果胶质和纤维素的增溶和解聚,引导细胞进行与果实成熟有关的细胞壁代谢.14C-蔗糖标记试验表明,在细胞壁不断降解的同时,也进行着合成.在果实成熟的启动阶段,细胞壁的合成能力加强.果实衰老过程与细胞壁合成减少有着直接的联系.受到低温伤害的果实细胞壁物质含量高于正常果实的原因,并不是其合成水平的升高,而是其降解的减慢.  相似文献   

15.
Changes in Cell Wall Composition during Ripening of Grape Berries   总被引:7,自引:1,他引:6       下载免费PDF全文
Cell walls were isolated from the mesocarp of grape (Vitis vinifera L.) berries at developmental stages from before veraison through to the final ripe berry. Fluorescence and light microscopy of intact berries revealed no measurable change in cell wall thickness as the mesocarp cells expanded in the ripening fruit. Isolated walls were analyzed for their protein contents and amino acid compositions, and for changes in the composition and solubility of constituent polysaccharides during development. Increases in protein content after veraison were accompanied by an approximate 3-fold increase in hydroxyproline content. The type I arabinogalactan content of the pectic polysaccharides decreased from approximately 20 mol % of total wall polysaccharides to about 4 mol % of wall polysaccharides during berry development. Galacturonan content increased from 26 to 41 mol % of wall polysaccharides, and the galacturonan appeared to become more soluble as ripening progressed. After an initial decrease in the degree of esterification of pectic polysaccharides, no further changes were observed nor were there large variations in cellulose (30–35 mol % of wall polysaccharides) or xyloglucan (approximately 10 mol % of wall polysaccharides) contents. Overall, the results indicate that no major changes in cell wall polysaccharide composition occurred during softening of ripening grape berries, but that significant modification of specific polysaccharide components were observed, together with large changes in protein composition.  相似文献   

16.
Pectin, a polysaccharide polymer from the plant cell wall, is an underestimated natural resource with many potential applications in the food and medical industries. Here we present, for the first time, the chemical composition of pectin obtained from flax shives, a by-product of flax fibre processing. The shives from transgenic flax overexpressing β-glucanase were analysed, revealing that genetic modification caused an increase in content of lignin, hemicellulose and pectin, without changes to cellulose, rearrangement of the structure of pectin and cellulose, a decrease in the content of phenolic compounds associated with the cell wall, and an increase in antioxidant capacity of the pectin CDTA fraction. The influence of pectin extract on the extracellular matrix remodelling process was verified. In fibroblast skin cells with induced oxidative stress, addition of pectin caused a reversal of the decrease of mRNA collagen genes, an increase of matrix metalloproteinase, interleukin 6 and MCP-1 gene expression, and a reduction in levels of TIMP-1 and SOCS-1 mRNA. The obtained results, in particular strong antioxidant properties of flax shives pectin from the CDTA-soluble fraction and its significant influence on genes participating in extracellular matrix remodelling, suggest the possible application of flax shives pectin in the wound healing process.  相似文献   

17.
Pectin and cellulose are major components of most primary cell walls, yet little is known about the way in which they interact either during assembly or in subsequent functional performance of the wall. As a mimic of cell wall assembly, we studied the formation of molecular composites formed by deposition of cellulose from Acetobacter xylinus into pectin/calcium systems, and the molecular, architectural and mechanical properties of the composites obtained. The formation of interpenetrating cellulose/pectin composite networks (as envisaged in current models for primary cell walls) required a pre-existing, but not too strong, pectin network. For pectin either in solution or strongly networked, phase separation from cellulose occurred, providing two physical models for the formation of middle lamellae. Composite networks showed no evidence of direct molecular interaction between the components, but pectin networks became more aggregated following deposition of cellulose into them. The shear strength under small deformation conditions for cellulose/pectin composites was very similar to that of cellulose alone. In contrast, under uniaxial tension, extensibility was greatly increased and stiffness decreased. These major changes were due to the effect of pectin on cellulose network architecture at deposition, as they were maintained upon removal of the pectin component. These results show that the presence and physical state of pectin at the time of cellulose deposition in muro may be a significant determinant of subsequent extensibility without compromising strength.  相似文献   

18.
Red-osier dogwood ( Cornus stolonifera Michx, Syn. Cornus sericea ), a species relatively well adapted to moderately saline conditions compared with other boreal species, was used to test the effects of NaCl on plant water relations, cell wall elasticity, and cell wall composition of seedlings. Three month-old seedlings were treated hydroponically with 0, 25, and 50 m m NaCl for 21 days. The osmotic potential at full turgor, osmotic potential at turgor loss, pressure potential at full turgor, and relative water content at turgor loss of red-osier dogwood shoot tissue were not significantly affected by the NaCl treatments. Cell wall elasticity of the shoot tissues did not change following NaCl treatments, suggesting that elastic adjustment did not play a role in the adaptation mechanism. Hemicellulose content of the cell wall increased in salt treated seedlings. The primary sugar found in the cell wall hemicellulose fraction was xylose. In the pectin fraction arabinose and galacturonic acid were the main sugars. Sodium chloride stress did not alter the sugar composition of the hemicellulose fraction; however, NaCl did increase the amount of rhamnose in the pectin fraction. The results of this study suggest that at moderate salinity red-osier dogwood does not make any osmotic or elastic adjustments in the shoot tissue, but some changes in the cell wall composition do occur. These changes could contribute to the decrease in growth recorded in red-osier dogwood during NaCl stress.  相似文献   

19.
Polarized one- and two-dimensional infrared spectra were obtained from the epidermis of onion (Allium cepa) under hydrated and mechanically stressed conditions. By Fourier-transform infrared microspectroscopy, the orientation of macromolecules in single cell walls was determined. Cellulose and pectin exhibited little orientation in native epidermal cell walls, but when a mechanical stress was placed on the tissue these molecules showed distinct reorientation as the cells were elongated. When the stress was removed the tissue recovered slightly, but a relatively large plastic deformation remained. The plastic deformation was confirmed in microscopic images by retention of some elongation of cells within the tissue and by residual molecular orientation in the infrared spectra of the cell wall. Two-dimensional infrared spectroscopy was used to determine the nature of the interaction between the polysaccharide networks during deformation. The results provide evidence that cellulose and xyloglucan associate while pectin creates an independent network that exhibits different reorientation rates in the wet onion cell walls. The pectin chains respond faster to oscillation than the more rigid cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号