首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 127 毫秒
1.
甜菜碱与植物耐盐基因工程   总被引:21,自引:0,他引:21  
向非甜菜碱积累植物导入甜菜碱合成途径是提高植物耐盐性的策略之一。甜菜碱是一种无毒的有机小分子化合物。盐胁迫下 ,它能在植物细胞中迅速积累以维持细胞的渗透平衡 ,并对胞内的一些重要酶类起保护作用。编码甜菜碱合成酶的基因已被克隆 ,并应用于植物耐盐基因工程。本文介绍了甜菜碱的生理作用、合成酶及相关基因的特性 ,并结合本实验室的工作对甜菜碱基因工程及其进展作了简单的综述  相似文献   

2.
甜菜碱提高植物抗寒性的机理及其应用   总被引:4,自引:1,他引:3  
甜菜碱是植物重要的渗透调节物质,在低温等逆境条件下,许多植物细胞中迅速积累甜菜碱以维持细胞的渗透平衡.对近几年来甜菜碱提高植物抗寒性的机理研究及其应用,包括甜菜碱的生物合成途径、低温胁迫下甜菜碱对植物的保护机理、甜菜碱合成酶基因的转化及外源甜菜碱在植物抗寒中的应用进行了综述.  相似文献   

3.
甜菜碱与植物抗旱/盐性研究进展   总被引:16,自引:0,他引:16  
系统地讨论了甜菜碱在植物体内的代谢特性与甜菜碱合成酶基因工程、甜菜碱生理功能与植物抗旱/盐生理的关系以及外源甜菜碱调控植物抗旱/盐性研究进展,最终实现通过施用外源甜菜碱和利用基因工程技术将合成甜菜碱的代谢途径引入植物,以抵抗由于干旱/盐胁迫对植物造成的伤害,为其农业利用开辟新途径。  相似文献   

4.
甜菜碱和甜菜碱合成酶   总被引:69,自引:4,他引:65  
就重要的渗透调节剂甜菜碱在高等植物中的分布、诱导积累和生物合成,以及甜菜碱合成酶的分子生物学研究的历史和进展作了扼要综述。甜菜碱是一种非毒性的渗透调节剂。植物、微生物、海洋无脊椎动物、海藻、真菌和细菌中都有存在。许多高等植物,特别是会科和禾本科植物,在受到水/盐胁迫时积累大量甜菜碱。甜菜碱生物合成的调节控制及其相应的遗传操作的研究,对认识植物的渗透调节机理和培育高抗盐抗旱作物品种有重要意义。  相似文献   

5.
甜菜碱是一种无毒的渗透调节剂.在盐胁迫下,植物体内迅速积累甜菜碱等小分子化合物以维持细胞内外的渗透平衡,从而维持细胞正常的生理功能.本文对甜菜碱的生理作用、生物合成、基因工程及植物抗盐的分子机制作一综述,为培育理想的耐盐植物新品系提供参考.  相似文献   

6.
甜菜碱提高植物抗盐性的作用机理及其遗传工程研究进展   总被引:3,自引:3,他引:0  
张波  张怀刚 《西北植物学报》2005,25(9):1888-1893
系统地讨论了甜菜碱在提高植物抗盐性中的作用机理及其国内外研究进展,并对甜菜碱生物合成过程中关键酶及其遗传工程的研究进展进行了综述。提出在进一步弄清甜菜碱提高植物抗盐性作用机理的基础上,应在重要作物中开展甜菜碱合成相关基因的导入,以期获得耐盐植物新品种。  相似文献   

7.
植物甜菜碱合成酶的分子生物学和基因工程   总被引:5,自引:0,他引:5  
甜菜碱是一种非毒性的渗透调节剂,多种高等植物在盐碱或缺水的环境下在细胞中积累甜菜碱,以维持细胞的正常膨压,甜菜碱的积累使得许多代谢中的重要酶类在渗透胁迫下能保持活性,在植物中甜菜碱由胆碱经两步氧化得到,催化第一步反应的酶是胆碱单加氧酶(CMO),催化第二步反应的酶是甜菜碱醛脱氢酶(BADH)。本文综述了这两种酶的分子生物学及基因工程研究的最新进展,讨论了基因工程研究的意义。  相似文献   

8.
植物甜菜碱合成途径及基因工程研究进展   总被引:11,自引:0,他引:11  
甜菜碱是公认的在细胞中起着无毒渗透保护作用的细胞相溶性物质 ,广泛存在于植物、动物、细菌等多种生物体中。植物中甜菜碱因其结构不同 ,其生物合成途径和催化合成所需要的酶也各不相同。综述了近年来甜菜碱生物合成途径、相关基因的克隆及基因工程研究进展 ,包括从不同生物体中克隆、鉴定的甜菜碱合成的相关基因及其定位、作用机理、同源性比较及表达差异、在转基因植物中的遗传稳定性以及转基因植物的抗盐耐旱、抗寒性等。  相似文献   

9.
甜菜碱是一种非毒性的渗透调节剂。多种高等植物在盐碱或缺水的环境下在细胞中积累甜菜碱 ,以维持细胞的正常膨压。甜菜碱的积累使得许多代谢中的重要酶类在渗透胁迫下能保持活性。在植物中甜菜碱由胆碱经两步氧化得到 ,催化第一步反应的酶是胆碱单加氧酶 (CMO) ,催化第二步反应的酶是甜菜碱醛脱氢酶 (BADH)。本文综述了这两种酶的分子生物学及基因工程研究的最新进展 ,讨论了其基因工程研究的意义。  相似文献   

10.
根据已发表的几种藜科植物甜菜碱醛脱氢酶(BADH)基因的同源保守区设计了一对引物,采用RT-PCR方法从盐生植物盐爪爪(Kalidium foliatum)中扩增出BADH基因的1个开放阅读框架,其核苷酸序列长1503bp,推测的氨基酸序列全长为500个氨基酸残基。核苷酸序列与藜科几种盐生植物如滨藜、碱蓬、菠菜、山菠菜和甜菜等的同源性为81%,与甜土植物水稻的同源性为69%。氨基酸序列与以上两类植物(盐生植物和甜土植物)的同源性比对为80%和71%,说明BADH基因在藜科盐生植物中是一种较高保守的基因。BADH基因编码的多肽在高等植物中行使重要的功能。用不同浓度的NaCl胁迫处理盐爪爪植株,BADHmRNA的表达水平比对照植株高,说明盐爪爪BADH基因的表达受盐诱导,间接说明甜菜碱醛脱氢酶催化合成的甜菜碱作为渗透调节的小分子物质,它的积累与盐胁迫存在紧密关联,本研究为进一步从生理和分子水平阐明盐爪爪的耐盐机制提供一定的参考。  相似文献   

11.
12.
Metabolic engineering for betaine accumulation in microbes and plants   总被引:1,自引:0,他引:1  
Plants accumulate a variety of osmoprotectants that improve their ability to combat abiotic stresses. Among them, betaine appears to play an important role in conferring resistance to stresses. Betaine is synthesized via either choline oxidation or glycine methylation. An increased betaine level in transgenic plants is one of the potential strategies to generate stress-tolerant crop plants. Here, we showed that an exogenous supply of serine or glycine to a halotolerant cyanobacterium Aphanothece halophytica, which synthesizes betaine from glycine by a three-step methylation, elevated intracellular accumulation of betaine under salt stress. The gene encoding 3-phosphoglycerate dehydrogenase (PGDH), which catalyzes the first step of the phosphorylated pathway of serine biosynthesis, was isolated from A. halophytica. Expression of the Aphanothece PGDH gene in Escherichia coli caused an increase in levels of betaine as well as glycine and serine. Expression of the Aphanothece PGDH gene in Arabidopsis plants, in which the betaine synthetic pathway was introduced via glycine methylation, further increased betaine levels and improved the stress tolerance. These results demonstrate that PGDH enhances the levels of betaine by providing the precursor serine for both choline oxidation and glycine methylation pathways.  相似文献   

13.
Drought and salinity are the major factors that decrease crop yield. Organisms thriving in osmotic stress environments need adaptive mechanisms for adjusting their intracellular environment to external osmotic stress conditions. One such mechanism, to prevent water loss from the cells is to accumulate large amounts of low molecular weight organic compatible solutes such as proline, betaine and polyols to balance internal osmolarity of the cells. Accumulation of compatible solutes can be achieved by enhanced synthesis and/or reduced catabolism. Certain plants synthesize betaine in chloroplasts via a two-step oxidation of choline and betaine accumulation is associated with enhanced stress tolerance. Many important crop plants have low levels of betaine or none at all. Hence, betaine biosynthetic pathway is a target for metabolic engineering to enhance stress tolerance in crops. Introduction of betaine synthesis pathway into betaine non-accumulating plants has often improved stress tolerance. However, betaine levels of the engineered plants were generally low. To further enhance the betaine accumulation levels, we need to diagnose factors limitng betaine accumulation in engineered plants. Here we discuss recent progress on metabolic engineering of choline precursors for abiotic stress tolerance in plants.  相似文献   

14.
15.
Glycine betaine is known to be the preferred osmoprotectant in many bacteria, and glycine betaine accumulation has also been correlated with increased cold tolerance. Trehalose is often a minor osmoprotectant in bacteria and it is a major determinant for desiccation tolerance in many so-called anhydrobiotic organisms such as baker's yeast(Saccharomyces cerevisiae). Escherichia coli has two pathways for synthesis of these protective molecules; i.e., a two-step conversion of UDP-glucose and glucose-6-phosphate to trehalose and a two-step oxidation of externally-supplied choline to glycine betaine. The genes governing the choline-to-glycine betaine pathway have been studied inE. coli and several other bacteria and higher plants. The genes governing UDP-glucose-dependent trehalose synthesis have been studied inE. coli andS. cerevisiae. Because of their well-documented function in stress protection, glycine betaine and trehalose have been identified as targets for metabolic engineering of stress tolerance. Examples of this experimental approach include the expression of theE. coli betA andArthrobacter globiformis codA genes for glycine betaine synthesis in plants and distantly related bacteria, and the expression of theE. coli otsA and yeastTPS1 genes for trehalose synthesis in plants. The published data show that glycine betaine synthesis protects transgenic plants and phototrophic bacteria against stress caused by salt and cold. Trehalose synthesis has been reported to confer increased drought tolerance in transgenic plants, but it causes negative side effects which is of concern. Thus, the much-used model organismE. coli has now become a gene resource for metabolic engineering of stress tolerance.  相似文献   

16.
17.
Glycine betaine is an osmoprotectant found in many organisms, including bacteria and higher plants. The bacterium Escherichia coli produces glycine betaine by a two-step pathway where choline dehydrogenase (CDH), encoded by betA, oxidizes choline to betaine aldehyde which is further oxidized to glycine betaine by the same enzyme. The second step, conversion of betaine aldehyde into glycine betaine, can also be performed by the second enzyme in the pathway, betaine aldehyde dehydrogenase (BADH), encoded by betB. Transformation of tobacco (Nicotiana tabacum), a species not accumulating glycine betaine, with the E. coli genes for glycine betaine biosynthesis, resulted in transgenic plants accumulating glycine betaine. Plants producing CDH were found to accumulate glycine betaine as did F1 progeny from crosses between CDH- and BADH-producing lines. Plants producing both CDH and BADH generally accumulated higher amounts of glycine betaine than plants producing CDH alone, as determined by 1H NMR analysis. Transgenic tobacco lines accumulating glycine betaine exhibited increased tolerance to salt stress as measured by biomass production of greenhouse-grown intact plants. Furthermore, experiments conducted with leaf discs from glycine betaine-accumulating plants indicated enhanced recovery from photoinhibition caused by high light and salt stress as well as improved tolerance to photoinhibition under low temperature conditions. In conclusion, introduction of glycine betaine production into tobacco is associated with increased stress tolerance probably partly due to improved protection of the photosynthetic apparatus.  相似文献   

18.
Choline Synthesis in Spinach in Relation to Salt Stress   总被引:5,自引:2,他引:3       下载免费PDF全文
Choline metabolism was examined in spinach (Spinacia oleracea L.) plants growing under nonsaline and saline conditions. In spinach, choline is required for phosphatidylcholine synthesis and as a precursor for the compatible osmolyte glycine betaine (betaine). When control (nonsalinized) leaf discs were incubated for up to 2 h with [1,2-14C]ethanolamine, label appeared in the N-methylated derivatives of phosphoethanolamine including phosphomono-, phosphodi-, and phosphotri- (i.e. phosphocholine) methyl-ethanolamine, as well as in choline and betaine, whereas no radioactivity could be detected in the mono- and dimethylated derivatives of the free base ethanolamine. Leaf discs from salinized plants showed the same pattern of labeling, although the proportion of label that accumulated in betaine was almost 3-fold higher in the salinized leaf discs. Enzymes involved in choline metabolism were assayed in crude leaf extracts of plants. The activites of ethanolamine kinase and of the three S-adenosylmethionine:phospho-base N-methyltransferase enzymes responsible for N-methylating phosphoethanolamine to phosphocholine were all higher in extracts of plants salinized step-wise to 100, 200, or 300 mM NaCI compared with controls. In contrast, choline kinase, phosphocholine phosphatase, and cytidine 5[prime]-triphosphate: phosphocholine cytidylyltransferase activities showed little variation with salt stress. Thus, the increased diversion of choline to betaine in salt-stressed spinach appears to be mediated by the increased activity of several key enzymes involved in choline biosynthesis.  相似文献   

19.
In plants, betaine is synthesized upon abiotic stress via choline oxidation, in which choline monooxygenase (CMO) is a key enzyme. Although it had been thought that betaine synthesis is well regulated to protect abiotic stress, it is shown here that an exogenous supply of precursors such as choline, serine, and glycine in the betaine-accumulating plant Amaranthus tricolor further enhances the accumulation of betaine under salt stress, but not under normal conditions. Addition of isonicotinic acid hydrazide, an inhibitor of glycine decarboxylase, inhibited the salinity-induced accumulation of betaine. Salt-induced accumulation of A. tricolor CMO (AmCMO) and betaine was much slower in roots than in leaves, and a transient accumulation of proline was observed in the roots. Antisense expression of AmCMO mRNA suppressed the salt-induced accumulation of AmCMO and betaine, but increased the level of choline approximately 2- 3-fold. This indicates that betaine synthesis is highly regulated by AmCMO expression. The genomic DNA, including the upstream region (1.6 kbp), of AmCMO was isolated. Deletion analysis of the AmCMO promoter region revealed that the 410 bp fragment upstream of the translation start codon contains the sequence responsive to salt stress. These data reveal that the promoter sequence of CMO, in addition to precursor supply, is important for the accumulation of betaine in the betaine-accumulating plant A. tricolor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号