首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
氮源对L-苏氨酸发酵的影响   总被引:3,自引:0,他引:3  
以L-苏氨酸生产菌TRFC为供试菌株,研究了氮源对L-苏氨酸发酵的产量和糖酸转化率的影响。首先通过摇瓶实验确定发酵的最佳无机氮源和有机氮源分别为硫酸铵和酵母粉,进一步利用10L罐补料分批发酵确定硫酸铵和酵母粉的最佳用量,继续优化培养条件,采用发酵中后期流加硫酸铵和糖氨混合补料等措施,L-苏氨酸产量得到进一步的提高。在最优发酵条件下,通过10L罐补料分批发酵36h,产酸可达118.9g/L,糖酸转化率为47.6%。  相似文献   

2.
对谷氨酸棒杆菌(Corynebacteriuin glutamicum)HCJ46产L-谷氨酸的补料分批发酵条件进行研究.结果表明:最适初糖质量浓度和最佳残糖维持质量浓度分别为100和(10~20)g/L;对发酵控温方式进行研究,确定了最佳温度控制策略为0~8h维持32℃,8~16h维持34℃、16~32h维持36℃,同时发现相对溶氧控制在30%左右时产酸最高.在以上的优化条件下,L-谷氨酸产量从72g/L提高到95g/L,提高了31.9%.  相似文献   

3.
溶氧对L-苏氨酸发酵的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
探索溶氧对L-苏氨酸发酵过程的影响及其控制方法。通过摇瓶装液量试验、不同溶氧控制方式考察发酵过程中溶氧对L-苏氨酸合成的影响。采用补料分批发酵工艺发酵L-苏氨酸,利用氨基酸分析仪测定发酵液中L-苏氨酸的产量,通过10L罐补料分批发酵36h,产酸可达118.9g/L,糖酸转化率为47.6%。可以得出溶氧对L-苏氨酸生物合成有重要影响,并建立了最佳溶氧控制条件。  相似文献   

4.
目的:以L-苏氨酸生产菌株TRFC为供试菌株,基于代谢计量分析对发酵过程中底物葡萄糖、蔗糖的影响做理论分析并对发酵过程进行优化.方法:利用代谢计量学方法对L-苏氨酸生产菌株代谢途径进行分析,以碳源优化及5、10 L发酵实验进行过程优化.结果与结论:发酵过程中,生物量及苏氨酸的产率取决于由葡萄糖转化的生物量占总量的摩尔比率,及转化的苏氨酸占总量的摩尔比率,最大理论值分别为24.1%、17.89%;种子及发酵培养基中葡萄糖与蔗糖的添加比例分别为2:8、8:2时得到最优值,L-苏氨酸最终产量为70 g/L.  相似文献   

5.
一株高产脯氨酸的嗜醋酸棒杆菌的选育及发酵条件优化   总被引:1,自引:0,他引:1  
以嗜醋酸棒杆菌为出发菌株,经过片段化全基因组体外诱变、重组和连续的磺胺胍抗性筛选,获得一株L-脯氨酸的高产菌株。摇瓶发酵优化结果表明,葡萄糖、生物素和硫胺素的最适用量分别为16%、300μg/L、400μg/L,最适pH为6.8~7.0,装液量为25ml/500ml摇瓶,发酵培养72h后L-脯氨酸产率高达到75.6g/L,与对照相比提高了5%。考察了50L发酵罐中细胞生长对L-脯氨酸产量的影响,补料分批发酵结果表明(比生长速率分别为0.06/h、0.08/h和0.1/h),比生长速率在0.08/h左右时L-脯氨酸的产率最高,L-脯氨酸的比生产速率QP达到0.091 g/(g.h),产率高达82.1 g/L,比优化前提高了14%。  相似文献   

6.
对玉米芯稀硫酸水解条件及糖化液发酵L-乳酸进行了初步研究。结果表明,玉米芯木聚糖最适水解条件为2%H2SO_4、120℃、30 min、固液比1:10,糖化液还原糖含量可达40.8 g/L,主要成分为木塘。细菌A-19可以利用水解液中的葡萄糖和木糖产酸,最适发酵条件为45℃、pH 6.5,从45℃~51℃、pH 5.5~pH 6.5产量均较高。用未浓缩的水解液发酵24 h,L-乳酸产量为30.6g/L,残糖为1.6 g/L,糖酸转化率为82.6%;用浓缩1倍的水解液发酵48 h,L-乳酸产量为41.4 g/L,残糖4.1g/L,糖酸转化率为68.2%,在发酵48 h后继续补料发酵至72 h(补料液为浓缩3倍的水解液),L-乳酸产量为50.9 g/L,残糖6.3 g/L,糖酸转化率为71.8%。该研究为利用木质纤维素生产L-乳酸奠定了一定基础。  相似文献   

7.
目的:提高L-组氨酸的产量并且得出最佳发酵条件。方法:在L-组氨酸的摇瓶发酵实验中,加入20g/L的葡萄糖酸钙,对发酵条件进行优化。结果:L-组氨酸的产量大幅度提高,产酸量由3.00g/L提高到7.50g/L。条件优化后L-组氨酸的产量提高到9.30g/L。结论:发酵培养基中20g/L的葡萄糖酸钙的加入能够诱导葡萄糖酸激酶生成,大幅度提高其比活,增大磷酸戊糖(HMP)途径的通量。有利于L-组氨酸的合成、菌体的生长。  相似文献   

8.
鼠李糖乳杆菌经实验室耐高糖高酸选育,能够在高糖浓度下高效高产L-乳酸。以酵母粉为氮源和生长因子,葡萄糖初始浓度分别为120 g/L和146 g/L,摇瓶培养120h,L-乳酸产量分别为104g/L和117.5g/L,L-乳酸得率分别为86.7%和80.5%。高葡萄糖浓度对菌的生长和乳酸发酵有一定的抑制。增加接种量,在高糖浓度发酵条件下,可以缩短发酵时间,但对增加乳酸产量效果不明显。乳酸浓度对鼠李糖乳杆菌生长和产酸有显著的影响。初始乳酸浓度到达70g/L以上时,鼠李糖乳杆菌基本不生长和产酸,葡萄糖消耗也被抑制。酵母粉是鼠李糖乳杆菌的优良氮源,使用其它被测试的氮源菌体生长和产酸都有一定程度的下降。用廉价的黄豆粉并补充微量维生素液,替代培养基中的酵母粉,可以使产酸浓度和碳源得率得以基本维持。  相似文献   

9.
采用液体发酵蝉拟青霉,对蝉拟青霉的发酵条件进行优化,以提高蝉拟青霉胞外多糖产量及生物量。摇瓶发酵条件下,在单因素基础上设计正交实验确定各因素的最佳组合。优化后得最佳发酵培养基:蔗糖8%,牛肉膏0.75%,酵母膏0.125%,MgSO_4·7H_2O 0.3%,KH_2PO_4 0.2%,麸皮0.5%。该条件下胞外多糖产量为5.96 g/L,生物量为42 g/L,较优化前提高了1倍。采用发酵罐进行扩大培养,对分批发酵时的初糖浓度进行了优化,并分析了补料分批发酵对发酵过程的影响。发酵罐培养时最适初糖浓度为5%,此时生物量最高为38 g/L,多糖含量最高为5.5 g/L;采用补料分批发酵时,多糖产量最高为5.89 g/L,生物量最高为40 g/L,效果优于分批发酵。  相似文献   

10.
采用逐步诱变处理与单菌落分离相结合,选育出一株产L-苏氨酸量较多的突变株C. cre-natum m-85 (AHV,Met-)。试验证明,生物素与蛋氨酸为其亲株d20~23生长必需因子,同时蛋氨酸又是积累L-苏氨酸的促进因子,硫胺素是生长和积累苏氨酸的促进因子。当生物素、蛋氨酸、硫胺素相配合,菌株产酸能力得以充分显示出来。通气量是L一苏氨酸发酵外部控制的主要条件。L-苏氨酸积累需气量较大。在合适的培养条件下,该菌可在发酵液中积累L一苏氨酸达13.4g/1。 发酵产物的结晶经旋光测定,红外光谱分析,纸上层析及生物鉴定证明是L-苏氨酸。  相似文献   

11.
以大肠杆菌BL21(DE3)为表达宿主,构建两株分别表达L-苏氨酸脱氨酶(LTD,基因来源大肠杆菌)和共表达亮氨酸脱氢酶(LDH,来源蜡样芽孢杆菌)/葡萄糖脱氢酶(GDH,来源枯草芽孢杆菌)的重组大肠杆菌,在此基础上,构建了一种以L-苏氨酸和D-葡萄糖为底物联产L-2-氨基丁酸(L-ABA)和D-葡萄糖酸的全细胞转化系统。通过转化条件(温度、p H、细胞通透性和菌体量)优化,并采用分批补料策略,164 g/L L-苏氨酸和248 g/L D-葡萄糖最终转化得到141.6 g/L的L-ABA和269.4 g/L的D-葡萄糖酸,时空得率分别达到7.1 g/(L?h)和13.5 g/(L?h),得率超过99%。本研究使用价格低廉的大宗化学品高效率生产出有较高附加值的产物,全细胞转化系统无需额外添加昂贵的辅酶,更适用于工业化生产。  相似文献   

12.
摘要:【目的】通过分子生物学手段构建重组质粒,将其转入野生型大肠杆菌W3110,分析含苏氨酸操纵子基因的质粒及质粒定点突变解除反馈抑制时,对L-苏氨酸积累的影响。【方法】以W3110染色体DNA为模板,PCR扩增苏氨酸操纵子基因,即启动子THrLp、编码前导肽基因thrL以及thrA、thrB、thrC基因,通过重叠延伸PCR的方法对thrA基因定点突变,解除苏氨酸对它的反馈抑制,构建出重组表达质粒WYE112和WYE134,5 L发酵实验测定L-苏氨酸的产量。【结果】经5 L发酵罐发酵产酸实验,W3110的L-苏氨酸产量为0.036 ± 0.004 g/L,携带含苏氨酸操纵子质粒的W3110菌株L-苏氨酸产量为2.590 ± 0.115 g/L,质粒上thrA解除反馈抑制后,L-苏氨酸的产量增加到9.223 ± 1.279 g/L。【结论】过表达苏氨酸操纵子基因可以使L-苏氨酸积累,进一步解除thrA基因的反馈抑制,可以增强L-苏氨酸积累的效果,为L-苏氨酸工程菌改造的进一步研究奠定了基础。  相似文献   

13.
目的 对海洋红酵母Y2高产类胡萝卜素的发酵条件进行优化.方法 在摇瓶条件下,研究培养基成分和培养条件对海洋红酵母Y2生长和类胡萝卜素合成的影响,同时进行海洋红酵母Y2发酵过程的动态分析.结果 海洋红酵母Y2优化培养基组合为葡萄糖45 g/L,蔗糖15 g/L,酵母粉5 g/L,蛋白胨2.5 g/L,磷酸二氢钾1 g/L,磷酸二氢钠3 g/L,硫酸镁7.5 g/L,氯化钾3 g/L,氯化钠5 g/L.最适培养参数为:温度20℃,培养基初始pH为5,接种量为10%,250 mL摇瓶装液量为10~50 mL.类胡萝卜素的合成主要集中在对数生长期和稳定期.海洋红酵母Y2最适收获时间为72 h.种龄以36 h为宜.结论 利用优化培养基,在最适条件下培养海洋红酵母Y2,类胡萝卜素产量达到4.97 mg/L,比基础培养基提高了60.32%.  相似文献   

14.
为从天然发酵红曲米中分离的30株红曲霉菌株中筛选高产MonacolinK的菌株,并对其产MonacolinK的发酵条件进行优化。实验采用高效液相色谱法(HPLC)筛选到9株具有产MonacolinK能力的红曲霉菌株,其中以编号ZX26的菌株产MonacolinK能力最高,发酵液中Monacolin K产量达到107.6mg/L,并且产MonacolinK能力具有良好的稳定性。微生物形态学结合ITS基因同源性分析结果表明,编号ZX26菌株为紫红曲霉。进一步采用单因素试验和正交试验法优化紫红曲霉ZX26产MonacolinK的发酵条件,结果表明在培养基组分为葡萄糖70g/L,牛肉膏15g/L,NaNO32g/L,MgSO4·7H2O0.5g/L,KH2PO41.5g/L时,其最优发酵条件为:发酵初始pH4.0,接种量为7%,培养温度30℃,发酵10天,在此条件下,紫红曲霉ZX26发酵液中MonacolinK产量达到271.36mg/L,相对于培养条件优化前MonacolinK产量提高152.19%,经验证此培养条件下MonacolinK产量最佳。  相似文献   

15.
固定化对酵母细胞发酵产ATP能力的影响   总被引:1,自引:0,他引:1  
通过试验对酵母菌细胞的固定化方法及固定化酵母细胞在发酵生产ATP方面的应用进行了探讨。综合固定化颗粒的性能指标(粒径、弹性和机械强度)和发酵产ATP的能力,通过正交试验对酵母菌细胞的包埋条件进行了优化,确定了固定化酵母细胞的较优组合为聚乙烯醇3.5%、海藻酸钠2%、CaCl23%及交联时间6h,发酵后ATP含量最高,达到0.716g/L。进一步发酵条件的试验证实,固定化能提高酵母菌细胞对温度适应范围,延长发酵生产周期,从而提高菌体的利用率。  相似文献   

16.
本研究以玉米秸秆水解液为原料,通过萃取发酵技术生产燃料丁醇,以提高丁醇产量,降低生产成本。通过对萃取剂的筛选与条件优化,确定纤维丁醇发酵的萃取剂为油醇,添加时间为发酵0 h,添加比例为1:1 (V/V)。该条件下发酵32 g/L糖浓度的玉米秸秆水解液,丁醇和总溶剂产量分别为3.28 g/L和4.72 g/L,比对照分别提高958.1%和742.9%。以D301树脂脱毒后5%总糖浓度的玉米秸秆水解液进行丁醇萃取发酵,丁醇和总溶剂产量分别达到10.34 g/L和14.72 g/L,发酵得率为0.31 g/g,与混合糖发酵结果相当。研究结果表明萃取发酵技术能够显著提高原料的利用率和丁醇产量,为纤维丁醇工业化生产提供了技术支撑。  相似文献   

17.
Cassava waste pulp (CWP)–enzymatic hydrolysate was co-fermented with molasses (CWP-EH/molasses mixture) with the aim to optimize ethanol production by Saccharomyces cerevisiae TISTR 5606 (SC 90). The optimal fermentation conditions for ethanol production using this mixture were 245 g/L initial total sugar supplemented with KH2PO4 (8 g/L), at 30 °C for 48 h of fermentation under an oxygen-limited condition with agitation at 100 rpm, producing an ethanol concentration of 70.60 g/L (0.31 g ethanol/g total sugar). The addition of cassava tuber fiber (solid residue of CWP after enzymatic hydrolysis) at 30 g/L dry weight to the CWP-EH/molasses mixture increased ethanol production to 74.36 g/L (0.32 g ethanol/g total sugar). Co-fermentation of CWP-EH with molasses had the advantage of not requiring any supplementation of the fermentation mixture with reduced nitrogen.  相似文献   

18.
张慧  王健  陈宁 《生物技术通讯》2005,16(2):156-158
运用神经网络对L-缬氨酸发酵培养基组成进行建模,在神经网络模型的基础上采用遗传算法对培养基组成进行优化,得到最佳发酵培养基组成.结果表明,运用神经网络并结合遗传算法是一种行之有效的优化方法.按最佳发酵培养基组成进行发酵实验64h,可在发酵液中积累L-缬氨酸28.5g/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号