首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
选择有代表性的12个玉米自交系,按Griffing4模式组配获得66个组合(F1),用温室盆栽,在3个Pb2+污染水平下对叶片和子粒Pb2+含量配合力和遗传参数进行分析。结果表明:玉米叶片和子粒的Pb2+含量一般配合力与特殊配合力差异均达到显著水平,非加性方差大于加性方差,遗传方差大于环境方差,广义遗传率大于狭义遗传率,该性状的变异主要来自遗传因素,遗传力较强。玉米种质筛选过程中,土壤Pb2+浓度在333.32 mg/kg以下,用亲本郑58组配的组合在筛选时不仅注重子粒Pb2+含量未超标而且要注重叶片Pb2+高富集,其主要是兼顾饲料和粮食安全的同时进行土壤Pb2+污染的生物修复;土壤Pb2+浓度高于715.46 mg/kg时,用亲本178组配的组合筛选应注意叶片和子粒低Pb2+积累的种质选育,对今后在不同Pb2+污染土壤中开展玉米品种筛选和规避污染育种策略的选择具有一定的指导意义。  相似文献   

2.
玉米自交系子粒中锌和铁含量的配合力分析   总被引:3,自引:0,他引:3  
选用子粒锌、铁含量有显著差异的7个玉米自交系,按NCⅡ7×7不完全双列杂交设计组配21个杂交组合进行玉米子粒锌和铁含量的配合力分析.结果表明,7个亲本中,锌含量最高的是亲本178(22.00mg/kg),铁含量最高的是亲本鲁原92(28.29mg/kg);21个杂交组合中,锌含量最高的是丹340×178(20.50mg/kg),铁含量最高的是鲁原92×178(29.95mg/kg).自交系178和鲁原92子粒锌和铁含量一般配合力效应值显著高于其他自交系,是比较理想的富集锌和铁的亲本.遗传参数分析表明,子粒锌、铁元素含量以非加性方差为主.2005年和2006年7个自交系锌和铁含量的变异分析表明,不同自交系子粒锌、铁含量在年度间的稳定性不同,其中自交系丹340子粒锌、铁含量较高并稳定性好.  相似文献   

3.
土壤和叶面Pb污染对小麦生长及体内Pb分布和积累的影响   总被引:4,自引:0,他引:4  
通过土壤添加Pb和叶面喷施Pb溶液的方式研究了Pb污染对小麦(Triticum aestivum L. )地上部分和籽粒干质量的影响,并对Pb污染条件下小麦体内Pb的分布和积累规律以及Pb污染浓度与籽粒Pb含量的相关性、叶片Pb含量与籽粒Pb含量的相关性进行了分析.结果表明:土壤中Pb添加量为2 000 mg·kg-1时,小麦地上部分和籽粒的干质量分别较对照下降了15.5%和13.3%,差异显著(P<0.05);叶面喷施100 mg·L-1Pb溶液,小麦地上部分和籽粒干质量分别较对照下降了10.3%和15.5%,差异显著(P<0.05).在土壤和叶面Pb污染条件下,小麦各器官的Pb含量均随Pb污染浓度的提高而增大;在土壤Pb污染条件下,小麦根中的Pb含量远高于其他器官,籽粒中的Pb含量最低;在叶面Pb污染条件下,小麦叶片中的Pb含量远高于其他器官,籽粒和根中的Pb含量较低.回归分析结果表明,小麦籽粒中的Pb含量与Pb污染浓度呈极显著正相关(P<0.001),籽粒中的Pb含量与土壤Pb总含量和叶面Pb污染浓度的曲线方程分别为: y=0.269+0.001 05x+2.736×10-7x2-1.707×10-10x3和y=0.465+0.013x-1.1×10-5x2+3.96×10-9x3;土壤中总的Pb毒性临界值为209.3 mg·kg-1,叶面Pb的毒性临界值为2.6 mg·L-1;在土壤和叶面Pb污染条件下,小麦籽粒中的Pb含量与叶片Pb含量间呈极显著的正相关(P<0.01),回归方程分别为:y=0.120 1x+0.076和y=0.001 6x+ 0.601 1,据此,在土壤和大气Pb污染条件下,可通过测定小麦叶片的Pb含量预测小麦籽粒中的Pb含量.  相似文献   

4.
本文利用对生基因转育获得的对生与互生自交系及其杂交组合,研究了对生性状对玉米主要品质性状的杂种优势和配合力的遗传效应的影响。结果表明:对生自交系籽粒品质性状的配合力效应一般高于互生玉米,在蛋白质含量上,对生F1杂种优势与普通互生F1无明显差异,而在油份和淀粉含量上对生F1较互生表现出明显的优势。不同组配方式对F1对生群体籽粒品质性状的杂种优势存在差异,在对生组合利用中通过互×互组配较对×对组配能使F1获得更高的蛋白质含量;选育含油量较高的对生系,利用对×对组合有助于选育高油杂交种;选育淀粉含量较高的含有不同对生基因的互生自交系作亲本,利用互×互组配有助于选育高淀粉对生杂交组合。  相似文献   

5.
采用土壤添加Pb和叶面喷施Pb溶液的方式,分别研究了土壤Pb和大气Pb在玉米植株各器官中的积累规律和Pb污染浓度与籽粒Pb含量、叶片Pb含量与籽粒Pb含量的相关性,以及土壤Pb和大气Pb对玉米籽粒Pb的贡献率.结果表明:土壤添加Pb后,玉米各器官中Pb含量表现为根>茎>叶>籽粒,且主要富集在根系中;叶面喷施Pb后,玉米各器官Pb含量大小顺序是叶片>茎、根>籽粒,且主要富集在叶片中;随着土壤和大气Pb浓度的增加,玉米各器官Pb含量均呈现不同程度的增加;玉米籽粒中的Pb含量与土壤和叶片Pb浓度呈显著正相关(P<0.01);土壤施加Pb的毒性临界值为118.95 mg·kg-1;大气Pb对玉米籽粒的贡献率为53.7%,土壤Pb对玉米籽粒的贡献率为46.3%,说明大气Pb通过叶面传输是玉米籽粒吸收Pb的重要途径.  相似文献   

6.
杂交水稻育种的实质是配合力育种, 筛选高特殊配合力的杂交水稻组合才能选育出在生产上有实用价值的强优势组合。文章利用SSR标记检测了9个三系杂交稻亲本(5个不育系和4个恢复系)之间的遗传距离, 结合20个杂交稻组合(5×4 NCII)的产量表现, 分析了杂交水稻特殊配合力(Special combining ability, SCA)效应与产量杂种优势、亲本间遗传距离的相关性。结果表明, 特殊配合力效应与对照优势(相关系数r1=0.5609)、平均优势(相关系数r2=0.541)之间均呈显著正相关, 而与亲本遗传距离之间相关不显著, 相关系数(r=0.2143)较小。说明本研究所配组合的特殊配合力效应能充分反映杂种优势, 选用的杂交亲本能组配出强优势组合; 而杂交亲本遗传距离的大小并不能反映特殊配合力效应, 分子标记遗传距离与特殊配合力的相关性还有待于进一步的探讨。  相似文献   

7.
大麦籽粒蛋白质含量的配合力研究   总被引:6,自引:0,他引:6  
黄志仁  周美学 《遗传学报》1991,18(3):263-270
采用蛋白质含量不同的6个大麦品种,以双列杂交设计,经过2年3个世代研究大麦籽粒蛋白质含量的杂种优势与配合力。试验表明:(1)大麦籽粒蛋白质含量在F_2、F_3代几乎全为负向优势(-10.81—16.92%)。低蛋白质含量为显性;(2)一般配合力方差为特殊配合力方差的3—4倍。亲本的表型与一般配合力效应相关密切。通过亲本可以大体预测杂种群体的蛋白质含量。Hiproly为高蛋白含量的优良亲本,Pally为低蛋白含量的优良亲本。(3)杂种组合籽粒蛋白质含量的特殊配合力高低与杂种优势相关密切,但与表型不密切,故不能完全以此评定杂种组合的价值。 对亲本籽粒蛋白质含量配合力的应用作了讨论。  相似文献   

8.
用具提莫菲维小麦细胞质的六倍体小黑麦的3个不育系和3个恢复系作为亲本,进行3×3不完全双列杂交,对所组配的F1代8个农艺性状的杂种优势分析结果表明,除千粒重外,其余性状出现正向超亲优势的组合较少,多数呈低亲或中亲遗传,且各组合间的差异比较显著。配合力分析表明,一般配合力与特殊配合力的方差均达到了显著水平,F1各性状均受基因加性效应和非加性效应共同作用;从总体上看,不育系A1、A2及恢复系R1、R2的一般配合力良好,其配制的组合优势较强,具一定的利用价值。对一般配合力与亲本表型值进行了相关分析,二者无显著的相关关系。  相似文献   

9.
在具有不同土壤铅(Pb)背景值的云南大叶茶主产区,分析了11个大叶茶种群(简写为P1, P2, …… P11)所在地的土壤Pb含量,相应各种群的老、嫩叶Pb含量和富集系数,并利用ISSR分子标记研究了这些种群的遗传特征,以期认识不同大叶茶种群在不同Pb背景值下对Pb的吸收积累特征及其遗传分化状况。结果表明:(1)在本研究区域内,大叶茶种群间土壤Pb含量、老叶和嫩叶Pb含量、富集系数差异显著,土壤有效Pb、嫩叶Pb含量分别在0.78—15.20mg/kg和2.03—7.02 mg/kg之间,嫩叶Pb富集系数变化范围为0.001—0.24;种群内差异小,例如P6种群内嫩叶Pb含量在2.82—2.84 mg/kg之间,嫩叶Pb富集系数变幅为0.09—0.10。(2)筛选的10个ISSR引物扩增出81条带,平均多态位点百分率(PPB)为75.25%;Shannon’s指数(I)估算出种群间的变异为34.28%,利用POPGENE软件计算出种群间遗传分化系数GST为0.3116,分子方差分析(AMOVA)也显示种群间变异占35.37%(P<0.001),表明不同种群的大叶茶出现了遗传分化。(3)UPGMA聚类分析发现,11个种群可分为5个类群,对Pb吸收累积能力高的与能力低的种群在聚类分析中存在明显分异;相关性分析表明,土壤有效Pb含量与PPB、I、Nei’s基因多样性指数(H)的 Pearson相关系数r分别为-0.633,-0.786,-0.581(P<0.05),土壤有效Pb含量与大叶茶种群遗传多样性水平程度不同呈负相关。讨论分析认为,在土壤Pb高背景值条件下,部分大叶茶种群遗传多样性水平降低,不同种群对Pb的吸收累积能力存在明显差异,种群间出现了显著的遗传分化。对低铅富集的遗传分化现象的深入研究将可能为遴选拒吸收污染物的洁净种质、在污染条件下进行无公害生产提供新途径。  相似文献   

10.
为了筛选更适合修复土壤重金属污染的丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)和寄主植物组合,对二月兰(Orychophragum violaeeus)、龙葵(Solanum nigrum)和麦冬(Ophiopogon japonicus)接种AM真菌摩西管柄囊霉(Funneliformis mosseae)和根内球囊霉(Glomus intraradices),通过测定Pb(1 000 mg/kg)和Cd(1.5 mg/kg)污染土壤中上述3种植物生长状况及其对Pb和Cd吸收与富集能力的影响,旨在获得富集重金属能力较强的AM真菌+植物组合。结果表明,施加Cd土壤中二月兰和麦冬的生物量高于对照,施加Pb或Cd处理显著降低龙葵的生长。龙葵对Pb和Cd富集能力最强,麦冬最弱;二月兰对Pb和Cd的转移能力最强。供试植物对Cd的富集能力和转移能力均大于对Pb的富集能力和转移能力。在Pb和Cd的胁迫下,摩西管柄囊霉和根内球囊霉均能促进供试植物的生长发育,并增加植株对Pb和Cd的富集系数,其中,摩西管柄囊霉对龙葵生物量、Pb和Cd富集系数的效应最大。综合考虑植物本身的生物量、对Pb和Cd的耐受力和富集能力,结论认为摩西管柄囊霉+龙葵组合是修复Pb或Cd污染土壤的高效AM真菌+植物组合之一,相关机制有待进一步研究。  相似文献   

11.
正Dear Editor,In December 2019, a novel human coronavirus caused an epidemic of severe pneumonia(Coronavirus Disease 2019,COVID-19) in Wuhan, Hubei, China(Wu et al. 2020; Zhu et al. 2020). So far, this virus has spread to all areas of China and even to other countries. The epidemic has caused 67,102 confirmed infections with 1526 fatal cases  相似文献   

12.
Curcumin is the yellow pigment of turmeric that interacts irreversibly forming an adduct with thioredoxin reductase (TrxR), an enzyme responsible for redox control of cell and defence against oxidative stress. Docking at both the active sites of TrxR was performed to compare the potency of three naturally occurring curcuminoids, namely curcumin, demethoxy curcumin and bis-demethoxy curcumin. Results show that active sites of TrxR occur at the junction of E and F chains. Volume and area of both cavities is predicted. It has been concluded by distance mapping of the most active conformations that Se atom of catalytic residue SeCYS498, is at a distance of 3.56 from C13 of demethoxy curcumin at the E chain active site, whereas C13 carbon atom forms adduct with Se atom of SeCys 498. We report that at least one methoxy group in curcuminoids is necessary for interation with catalytic residues of thioredoxin. Pharmacophore of both active sites of the TrxR receptor for curcumin and demethoxy curcumin molecules has been drawn and proposed for design and synthesis of most probable potent antiproliferative synthetic drugs.  相似文献   

13.
The young pistils in the melanthioid tribes, Hewardieae, Petrosavieae and Tricyrteae, are uniformly tricarpellate and syncarpous. They lack raphide idioblasts. All are multiovulate, with bitegmic ovules. The Petrosavieae are marked by the presence of septal glands and incomplete syncarpy. Tepals and stamens adhere to the ovary in the Hewardieae and the Petrosavieae but not in the Tricyrteae. Two vascular bundles occur in the stamens of the Hewartlieae and Tricyrtis latifolia. Ventral bundles in the upper part of the ovary of the Hewardieae are continuous with compound septal bundles and placental bundles in the lower part. Putative ventral bundles occur in the alternate position in the Tricyrteae and putative placental bundles in the opposite. position in the Petrosavieae. The dichtomously branched stigma in each carpel of the Tricyrteae is supplied by a bifurcated dorsal bundle.  相似文献   

14.
15.
Highlights
1. The N-terminal tail of histone H3 is specifically cleaved during EV71 infection.
2. Viral protease 3C is identified as a protease responsible for proteolytically processing the N-terminal H3 tail.
3. Our finding reveals a new epigenetic regulatory mechanism for Enterovirus 71 in virus-host interactions.  相似文献   

16.
Rasmussen’s encephalitis (RE) is a rare pediatric neurological disorder, and the exact etiology is not clear. Viral infection may be involved in the pathogenesis of RE, but conflicting results have reported. In this study, we evaluated the expression of both Epstein-Barr virus (EBV) and human herpes virus (HHV) 6 antigens in brain sections from 30 patients with RE and 16 control individuals by immunohistochemistry. In the RE group, EBV and HHV6 antigens were detected in 56.7% (17/30) and 50% (15/30) of individuals, respectively. In contrast, no detectable EBV and HHV6 antigen expression was found in brain tissues of the control group. The co-expression of EBV and HHV6 was detected in 20.0% (6/30) of individuals. In particular, a 4-year-old boy had a typical clinical course, including a medical history of viral encephalitis, intractable epilepsy, and hemispheric atrophy. The co-expression of EBV and HHV6 was detected in neurons and astrocytes in the brain tissue, accompanied by a high frequency of CD8+ T cells. Our results suggest that EBV and HHV6 infection and the activation of CD8+ T cells are involved in the pathogenesis of RE.  相似文献   

17.
18.
Shen  Jia-Yuan  Li  Man  Xie  Lyu  Mao  Jia-Rong  Zhou  Hong-Ning  Wang  Pei-Gang  Jiang  Jin-Yong  An  Jing 《中国病毒学》2021,36(1):145-148
正Dear Editor,Chikungunya virus (CHIKV), an arbovirus in the family of Togaviridae, genus Alphavirus, is transmitted by the A.aegyptii or A. albopictus mosquito, and causes disease in humans characterized by fever, rash, and arthralgia (Silva and Dermody 2017; Suhrbier 2019). It was first reported in 1953 in Tanzania, and caused only a few outbreaks and sporadic cases in Africa and Asia in last century. However, in the epidemic in 2004, CHIKV acquired mutations that conferred enhanced transmission by the A. albopictus mosquito(Schuffenecker et al. 2006). Since then, it has successively caused outbreaks in Africa, the Indian Ocean, South East Asia, the South America, and Europe (Zeller et al. 2016).  相似文献   

19.
In conclusion, the novel visual RT-LAMP assay is a simple, rapid, and sensitive approach for detection of SARS-CoV-2, and it is ready for application in primary care and community hospitals or health care centers, and even patients' own houses in response to the current SARS-CoV-2 epidemic because the assay does not require sophisticated equipment and skilled personnel. Furthermore, it is also ready to be used in fields for screening samples from wild animals and environments to facilitate the identification of potential intermediate hosts that mediate the cross-species transmission of SARS-CoV-2 from bats to humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号