首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 111 毫秒
1.
目的:比较人皮肤成纤维细胞(humandermalfibroblasts,HDFs)与小鼠胚胎成纤维细胞(Mouseembryonicfibroblasts,MEFs)的增殖能力及研究人皮肤成纤维细胞作为饲养层支持人胚胎干细胞(humanembryonicstemcells,hESCs)未分化生长的能力。方法:利用组织贴壁法从人皮肤中分离出HDFs,通过细胞形态的观察和生长曲线的绘制比较HDFs与MEFs的体外增殖能力。将HDFs作为饲养层细胞与hESCs共培养,传代12代后,检测hESCs碱性磷酸酶(AKP)、表面特异性标志及胚胎干细胞特异性转录因子。结果:HDFs可连续传代培养15代以上,10代以下的HDFs增殖迅速,而MEFs自第4代起,增殖能力就明显下降;hESCs在HDFs饲养层上可传代培养12代以上,克隆边界清晰,细胞排列紧密,碱性磷酸酶、表面标志物检测均呈阳性,表达了hESCs特异性转录因子。结论:HDFs比MEFs具有更强的增殖能力;HDFs可作为培养hEscs的饲养层细胞。  相似文献   

2.
人胚胎干细胞(human embryonic stem cells,hESCs)由囊胚期胚胎内细胞团分离培养获得,具有保持未分化状态的无限增殖能力。hESCs具有多向分化潜能,在体内和体外均可分化形成所有三个胚层(外胚层、中胚层、内胚层)的衍生物。hESCs一般在鼠胚胎成纤维细胞(mouse embryonic fibroblast,MEF)饲养层上培养和扩增。为了优化培养条件,目前人们已发展了多种人类细胞饲养层和无饲养层、非条件培养基体系。hESCs可以在体外定向诱导分化为多种细胞类型,为揭示人胚早期发育机制和发展多种疾病的细胞移植治疗奠定了基础。hESCs可以在体外进行遗传修饰,将有助于揭示特定基因在发育过程中的调控和功能。对hESCs的深入研究将极大地推动医学和生命科学的进展,并将最终应用于临床,造福人类。  相似文献   

3.
小鼠胚胎成纤维细胞(MEFs)是目前国际上公认的人胚胎干细胞(hESCs)体外培养的饲养层细胞,但MEFs存在寿命短、动物源性污染等问题,需要探索适于hESCs体外培养且寿命长的人源性饲养层.采用胰蛋白酶消化法和组织块法分别原代培养人包皮成纤维细胞(hFFs),探索hFFs原代培养的最佳方法,为hFFs作为饲养层在hESCs研究中的应用提供可靠的科学依据;通过倒置显微镜下观察其生长状态和免疫细胞化学染色鉴定,结果显示两种原代培养方法获得的hFFs的形态及生物学特性均符合成纤维细胞;通过测定细胞生长曲线及MTT法检测,结果显示两种原代培养方法获得的不同代数的hFFs均具有较高的增殖活性,传代10余代仍能保持较好的细胞形态,可以制备成饲养层用于hESCs的研究.  相似文献   

4.
无饲养层培养人胚胎干细胞方法的建立   总被引:5,自引:2,他引:3  
人胚胎干细胞(human embryonic stem cell,hES细胞)是当前医学研究的热点之一.然而hES细胞培养条件苛刻,通常需要采用鼠胚胎成纤维细胞(mouse embryonic fibroblast,MEFs)饲养层来维持其未分化状态,成为目前hES细胞研究的瓶颈之一、本实验成功地将hES细胞接种在细胞外基质包被的六孔板上培养,传代20次后细胞仍然保持良好的未分化状态,各种hES细胞生物学特性(如表面标志物SSEA-3、SSEA-4、TRA-1-60和TRA-1-8l,OCT-4,碱性磷酸酶及体内外分化潜能等)均无改变;其冻存、复苏效果与生长在饲养层上的hES细胞无明显差异.因此,该无饲养层培养体系可以用于培养hES细胞,并为hES细胞转基因研究及大规模培养打下良好的基础.  相似文献   

5.
人胚胎干细胞(human embryonic stem cell,hESCs)是早期胚胎或原始性腺中分离出来的一类细胞,它具有无限增殖、自我更新和全能分化的特性。无论在体内还是体外环境,人胚胎干细胞都能分化为机体几乎所有类型的细胞。基于其全能分化性,胚胎干细胞成为治疗各种退行性疾病的理想细胞来源。然而,在目前培养条件下所建立的胚胎干细胞株,仍然存在动物源性物质潜在污染的问题。因此,更优化的建株及培养条件十分重要。  相似文献   

6.
人孤雌胚胎干细胞(human parthenogenetic embryonic stem cells,hPESCs)体外培养常需饲养层的支持以保持干细胞特性.通过原代培养获得人包皮成纤维细胞(human foreskin fibroblasts,hFFs)并将其制备成饲养层,使hPESCs在hFFs上进行体外培养及传代.倒置显微镜下观察hPESCs的生长状态,采用碱性磷酸酶(alkalinephosphatase,AKP)检测、核型分析和体内分化实验研究hPESCs的生物学特性及分化潜能,以探索hFFs能否长期支持hPESCs的生长并维持其未分化状态.经原代培养成功获得了hFFs,通过形态学观察和免疫细胞化学染色鉴定符合成纤维细胞的生物学特性;在hFFs上生长的hPESCs克隆形态规则,不易分化;已成功在体外培养20余代,hPESCs仍能够保持基本生物学特性和正常核型,在裸鼠体内可形成含有3个胚层组织成分的畸胎瘤.作为人源性饲养层,hFFs可长期支持hPESCs的生长并维持其未分化状态.  相似文献   

7.
该研究优化了山羊精原干细胞(goat spermatogonial stem cells,g SSCs)培养体系,使山羊精原干细胞能在体外长期培养,维持自我更新的能力并保持未分化状态。取3~5月龄山羊睾丸,采用两步酶消法结合差速贴壁方法得到山羊精原干细胞悬液,分别通过形态学观察、碱性磷酸酶(alkaline phosphatase,AKP)染色、特异基因表达及蛋白质水平的分析对培养的细胞进行鉴定;并以山羊睾丸支持细胞(goat sertoli cells,g SCs)、小鼠胚胎成纤维细胞(mouse embryonic fibroblasts,MEFs)和层黏连蛋白(laminin,L)为饲养层,观察饲养层对山羊精原干细胞体外增殖的影响。结果表明,山羊精原干细胞体外增殖形成克隆簇,AKP染色呈阳性。经RT-PCR检测,Oct-4、C-myc、Cyclin D1、Ngn3和TERT等干细胞特异基因均有表达。细胞免疫组化结果显示,Oct-4、SSEA-1、α6-integrin、Vasa和Thy-1蛋白质呈阳性。克隆簇统计显示,在山羊睾丸支持细胞上形成的山羊精原干细胞(goat spermatogonial stem cells,g SSCs)克隆数与其他两组比较差异显著(P0.05)。山羊睾丸支持细胞饲养层上的精原干细胞可在体外传3~4代,培养时间为2个月。结果证明,通过两步酶消法和差速贴壁法可以分离获得山羊精原干细胞,且山羊睾丸支持细胞能够促进g SSCs的增殖。  相似文献   

8.
昆明小鼠胚胎干细胞滋养层制备条件的实验研究   总被引:1,自引:0,他引:1  
目的:建立小鼠胚胎成纤维细胞(MEFS)滋养层,用于昆明小鼠胚胎干细胞的培养。方法:取妊娠13.5的胎鼠,采用组织消化法分离培养出原代成纤维细胞,对MEFs的生长形态、生长曲线及分裂指数进行观察;MTT法筛选丝裂霉素C(MMC)作用的最佳浓度和时间;取妊娠3.5d的囊胚在经MMC处理的饲养层上培养,观察胚胎干细胞集落生成情况。结果:MEFS为一种贴壁生长且增殖速度较快的细胞,第三代细胞增殖旺盛,第5代以后细胞开始变形并趋于衰老;MMC能抑制胚胎成纤维细胞的增殖,最佳的作用浓度和时间是10ug/ml作用2.5~4h,20ug/ml作用1-2.5h。妊娠3.5d小鼠囊胚在饲养层上培养能形成典型的"鸟巢"状干细胞集落,并可维持胚胎干细胞的正常形态且不发生分化。结论:这种方法制备的滋养细胞层适用于胚胎干细胞的培养。  相似文献   

9.
鸡胚胎生殖细胞在鼠胚成纤维细胞饲养层上的生长   总被引:1,自引:0,他引:1  
目的:探讨以鼠胚成纤维细胞为饲养层分离、培养鸡胚胎生殖细胞的方法和条件。方法:分离、培养12.5~13.5d鼠胚成纤维细胞。分离孵化5.5d鸡胚原始生殖细胞,原代培养时不使用饲养层,与性腺基质细胞共培养;继代培养时将其置于鼠胚成纤维细胞饲养层上,在含生长因子、分化抑制因子的培养体系中培养胚胎生殖细胞。结果:鼠胚成纤维细胞可连续传代18代以上(4个月),3~15代细胞可以用作饲养层细胞。分离的鸡胚胎生殖细胞在饲养层上可增殖形成典型胚胎生殖细胞集落,并能连续在体外培养超过9代。集落未分化标志高碘酸希夫反应(PAS)呈强阳性,体外分化实验表明胚胎生殖细胞具有多能性。结论:用鼠胚成纤维细胞作为饲养层能获得可连续增殖的胚胎生殖细胞。  相似文献   

10.
目的:研究比较三种经典饲养层体系使用的成纤维细胞中Wnt基因的表达,及其对共培养的人胚胎干细胞的影响。方法:PCR验证19种Wnt基因在三种不同来源饲养层细胞中的表达情况,q PCR验证各组共培养人胚胎干细胞的Wnt/β-Catenin信号通路相关基因表达水平,流式检测其在不同密度饲养层条件下的增殖分化情况。结果:在全部19种Wnt基因(Wnt1,Wnt2,Wnt2b,Wnt3,Wnt3a,Wnt4,Wnt5a,Wnt5b,Wnt6,Wnt7a,Wnt7b,Wnt8a,Wnt8b,Wnt9a,Wnt9b,Wnt10a,Wnt10b,Wnt11,Wnt16)的表达检测中,昆明白小鼠来源饲养层细胞表达其中的16种,ICR小鼠来源饲养层细胞表达其中的10种,人成纤维细胞来源饲养层细胞表达其中的10种;增加饲养层细胞密度能够不同程度活化Wnt/β-Catenin信号通路下游基因的表达,并激活人胚胎干细胞中的负反馈机制;高密度小鼠饲养层条件促进人胚胎干细胞的分化,高密度人饲养层条件促进人胚胎干细胞的增殖和分化。结论:不同经典饲养层体系提供的Wnt环境不同,其培养的人胚胎干细胞状态也有差异。  相似文献   

11.
12.
The conventional method for the derivation of human embryonic stem cells (hESCs) involves inner cell mass (ICM) co-culture with a feeder layer of inactivated mouse or human embryonic fibroblasts in an in vitro fertilisation culture dish. Growth factors potentially involved in primary derivation of hESCs may be lost or diluted in such a system. We established a microdrop method which maintained feeder cells and efficiently generated hESCs. Embryos were donated for stem cell research after fully informed patient consent. A feeder cell layer was made by incubating inactivated mouse embryonic fibroblasts (MEFs) feeder cells in a 50 μl drop of medium (DMEM/10% foetal calf serum) under mineral oil in a small tissue culture dish. MEFs formed a confluent layer and medium was replaced with human embryonic stem medium supplemented with 10% Plasmanate (Bayer) and incubated overnight. Cryopreserved embryos were thawed and cultured until the blastocyst stage and the zona pellucida removed with pronase (2 mg/ml; Calbiochem). A zona-free intact blastocyst was placed in the feeder microdrop and monitored for ES derivation with medium changed every 2-3 d. Proliferating hESCs were passaged into other feeder drops and standard feeder preparation by manual dissection until a stable cell line was established. Six hESC lines (Shef 3-8) were derived. From a total of 46 blastocysts (early to expanded), five hESC lines were generated (Shef 3-7). Shef 3-6 were generated on MEFs from 25 blastocysts. Shef7 was generated on human foetal gonadal embryonic fibroblasts from a further 21 blastocysts. From our experience, microdrop technique is more efficient than conventional method for derivation of hESCs and it is much easier to monitor early hESC derivation. The microdrop method lends itself to good manufacturing practice derivation of hESCs.  相似文献   

13.
Various types of feeder cells have been adopted for the culture of human embryonic stem cells (hESCs) to improve their attachment and provide them with stemness-supporting factors. However, feeder cells differ in their capacity to support the growth of undifferentiated hESCs. Here, we compared the expression and secretion of four well-established regulators of hESC pluripotency and/or differentiation among five lines of human foreskin fibroblasts and primary mouse embryonic fibroblasts throughout a standard hESC culture procedure. We found that human and mouse feeder cells secreted comparable levels of TGF beta 1. However, mouse feeder cells secreted larger quantities of activin A than human feeder cells. Conversely, FGF-2, which was produced by human feeder cells, could not be detected in culture media from mouse feeder cells. The quantity of BMP-4 was at about the level of detectability in media from all feeder cell types, although BMP-4 dimers were present in all feeder cells. Production of TGF beta 1, activin A, and FGF-2 varied considerably among the human-derived feeder cell lines. Low- and high-producing human feeder cells as well as mouse feeder cells were evaluated for their ability to support the undifferentiated growth of hESCs. We found that a significantly lower proportion of hESCs maintained on human feeder cell types expressed SSEA3, an undifferentiated cell marker. Moreover, SSEA3 expression and thus the pluripotent hESC compartment could be partially rescued by addition of activin A. Cumulatively, these results suggest that the ability of a feeder layer to promote the undifferentiated growth of hESCs is attributable to its characteristic growth factor production.  相似文献   

14.
Induced pluripotent stem(iPS)cells can be derived from human somatic cells by cellular reprogramming.This technology provides a potential source of non-controversial therapeutic cells for tissue repair,drug discovery,and opportunities for studying the molecular basis of human disease.Normally,mouse embryonic fibroblasts(MEFs)are used as feeder layers in the initial derivation of iPS lines.The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cells reprogrammed from somatic cells using lentivirai expressed reprogramming factors.In our study,iPS cells expressed common pluripotency markers,displayed human embryonic stern cells(hESCs)morphology and unmethylated promoters of NANOG and OCT4.These data demonstrate that SNL feeder cells can support the derivation and maintenance of human iPS cells.  相似文献   

15.
The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3β, PDX1, CD34, p63, nestin, PAX6) markers. Double-labeling showed YKL-40 expression in OCT4-positive hESCs, PAX6-positive neuroectodermal cells, and HNF-3β-positive endodermal cells. The differentiating progeny showed strong YKL-40 expression. Abrupt transition between YKL-40 and OCT4-positive hESCs and YKL-40-positive ecto- and neuroectodermal lineages was observed within the same epithelial-like layer. YKL-40-positive cells within deeper layers lacked contact with OCT4-positive cells. YKL-40 may be important in initial cell differentiation from hESCs toward ectoderm and neuroectoderm, with retained epithelial morphology, whereas later differentiation into endoderm and mesoderm involves a transition into the deeper layers of the colony.  相似文献   

16.
Bovine embryonic stem cell-like cell lines cultured over several passages   总被引:3,自引:0,他引:3  
Summary A total of 14 microsurgically produced zona pellucida-free bovine demi-blastocysts were cultured for 3 days in tissue culture medium (TCM) 199 supplemented with 10% heat-inactivated newborn calf serum (NBCS). Developing embryos were continuously cultured in TCM 199 plus 10% NBCS on a feeder-layer of murine embryonic fibroblasts, that had been incubated with mitomycin C (10 g/ml) for 3 h prior to the onset of embryo cultivation to block mitotic activity of the fibroblasts. After 2 days, 3 expanded blastocysts were attached to the feeder-layer and both trophoblastic cells and inner cell mass (ICM) cells became apparent on the 9th day of culture in 2 out of the 3 expanded blastocysts. Five days later, the ICM cells were disaggregated by a short-term trypsin treatment. The resulting dissociated clumps were seeded on a new murine embryonic fibroblast feeder-layer and covered with modified minimum essential medium (MEM)-Alpha with 10% fetal calf serum (FCS), 0.1 mm mercaptoethanol, 4.5 g/l glucose and 20 mm HEPES-buffer (=passage 0). To prevent differentiation of the cells, approximately 1/3 of the MEM-Alpha was replaced by MEM previously incubated on cell line 5637 containing leucaemia inhibitory factor (LIF) for 3 days. Colonies of embryonic stem cell (ES)-like cells were observed 5 days after the 1st passage. These colonies were repeatedly passaged at approximately 2-week intervals. Two bovine ES-like cell lines were established, which grew considerably slower than murine ES cells, but were lost after the 4th passage, possibly because of toxic effects of a new FCS batch. After cytogenetic analysis, 16 out of 18 metaphase plates contained an euploid number of chromosomes with 2 X-chromosomes and 58 autosomes. Distribution of G-banding on the chromosomes of ES-like cells was in accordance with the diploid set of the bovine genome. ES-like cells were fused to in vitro matured bovine oocytes and, upon successful fusion, cultured in vitro over 5 days. Successful fusion was observed in 79.8% (67/84), 31.3% initiated cleavege and 10.4% reached the 8–16 cell stage at termination of culture. Offprint requests to: H. Niemann  相似文献   

17.
18.
Human embryonic stem cell (hESC) lines are traditionally derived and maintained on mouse embryonic fibroblasts (MEF) which are xenogeneic and enter senescence rapidly. In view of the clinical implications of hESCs, the use of human fibroblast as feeders has been suggested as a plausible alternative. However, use of fibroblast cells from varying sources leads to culture variations along with the need to add FGF2 in cultures to sustain ES cell pluripotency. In this study we report the derivation of FGF2 expressing germ layer derived fibroblast cells (GLDF) from hESC lines. These feeders could support the pluripotency, karyotypes and proliferation of hESCs with or without FGF2 in prolonged cultures as efficiently as that on MEF. GLDF cells were derived from embryoid bodies and characterized for expression of fibroblast markers by RT-PCR, Immunofluorescence and by flow cytometry for CD marker expression. The expression and secretion of FGF2 was confirmed by RT-PCR, Western blot, and ELISA. The hESC lines cultured on MEF and GLDF were analyzed for various stemness markers. These feeder cells with fibroblast cells like properties maintained the properties of hESCs in prolonged culture over 30 passages. Proliferation and pluripotency of hESCs on GLDF was comparable to that on mouse feeders. Further we discovered that these GLDF cells could secrete FGF2 and maintained pluripotency of hESC cultures even in the absence of supplemental FGF2. To our knowledge, this is the first study reporting a novel hESC culture system which does not warrant FGF2 supplementation, thereby reducing the cost of hESC cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号