首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The present study was designed to examine whether in vitro produced porcine embryos can be used to establish an embryonic stem (ES) cell line. Porcine embryos were produced by in vitro maturation and in vitro fertilization. Embryos at the 4-cell to blastocyst stages were cultured in an ES medium containing 16% fetal bovine serum with mouse embryonic fibroblasts as a feeder layer. It was found that ES-like colonies were derived only from blastocysts. When these ES-like colonies were separated in 0.25% trypsin-0.02% EDTA solution and cultured again, ES-like colonies were further observed in the subsequent culture until the fourth passage. The cells from ES-like colonies showed positive alkaline phosphatase activity. Some cells from the colonies differentiated into several types of cells in vitro when they were cultured in the medium without feeder layers and leukemin inhibitory factor. Embryoid bodies were also formed when the cells were cultured in a suspension status. These results indicate that porcine ES-like cells can be derived from in vitro produced porcine blastocysts and these ES-like cells are pluripotent. The culture system used in the present study is useful to isolate and culture ES cells from in vitro produced porcine embryos.  相似文献   

2.
Embryonic stem (ES)-like cells were isolated from in vivo-produced cat embryos. Total of 101 blastocysts were collected from female cats. The inner cell mass (ICM) were mechanically isolated and cultured on mitomycin-C-treated cat embryonic fibroblast feeder layers in medium supplemented with knockouttrade mark Serum Replacement (KSR-medium) or fetal bovine serum (FBS-medium). Putative ES-like cell colonies developed in both KSR- and FBS-medium conditions, but formed domed and flat colonies, respectively. ICM cell attachment and ES-like cell colony formation were significantly higher in KSR-medium, but subsequent cell proliferation was significantly lower than in FBS-medium. For passaging, 32 and 18 colonies in KSR- and FBS-medium were separated by enzymatic dissociation or mechanical disaggregation. Enzymatic dissociation resulted in cell differentiation; however, mechanical disaggregation generated cells that remained undifferentiated over more than four passages and yielded two cat ES-like cell lines that continued to grow for up to eight passages in FBS-medium. These cells had typical stem cell morphology, expressed high levels of alkaline phosphatase activity, and were positive for the ES cell-markers Oct-4, stage-specific embryonic antigen-1 (SSEA-1), SSEA-3, and SSEA-4. These cells formed embryoid bodies (EBs) in suspension culture after extended suspension culture. When simple EBs were cultured on tissue culture plates, they differentiated into several cell types, including epithelium-like and neuron-like cells. In addition, EBs were positive for mesoderm marker, desmin. After prolonged in vitro culture, some colonies spontaneously differentiated into beating myocardiocytes, and were positive for alpha-actinin. These observations indicate that cat ES-like cells were successfully isolated and characterized from in vivo-produced blastocysts.  相似文献   

3.
To increase our understanding of rat embryos in culture and to attempt the isolation of blastocyst-derived cell lines, we examinated the initial growth behaviour of rat blastocysts from four strains of rat on four different feeder cell layers. The feeders used were a continuous cell line of murine embryonic fibroblasts (STO), primary mouse (MEF) or primary rat (REF) embryonic fibroblasts, and a continuous cell line of rat uterine epithelial cells (RUCs). A medium that gave optimum plating efficiencies for murine ES cells was used in the rat embryo culture. Each culture system allowed hatching and attachment of the blastocysts, that is, the behaviour was similar on each feeder and each strain for the first 2 days in culture. Subsequently, there was a rapid differentiation of the Inner Cell Mass (ICM) cells on fibroblastic feeder cell layers (STO > MEF > REF), and this was generally complete after 3–6 days in primary culture. On RUCs, the ICM was found to increase in size without differentiation up to and including day 4 and in some cases longer. Embryo-derived cells were obtained by disaggregating and passaging ICMs on REF and RUC feeders. Rounded, refractile, and epithelial-like cells were isolated on REF and colonies of ES-like cells on the RUCs. The ES-like cells were positive for expression of alkaline phosphatase and stage-specific embryonic-antigen 1. This is an important first step towards the derivation and culture of pluripotent ES cells from the rat. © 1995 Wiley-Liss, Inc.  相似文献   

4.
The efficiency of isolation and the characteristics of embryo-derived cell lines from murine, porcine, and ovine embryos cultured on STO feeders or homologous embryonic fibroblasts (HEF) feeders were compared. While murine isolated ICM or intact embryos plated on STO or HEF feeders gave rise to cell lines with embryonic stem cell-like (ES-like) morphology, ovine embryos did not. Cell lines with ES-like morphology were isolated from porcine intact embryos and isolated ICM when plated on STO feeders but not when plated on HEF. Neither murine nor porcine ES-like cell lines expressed cytokeratin 18 or vimentin. Unlike murine ES-like cell lines, porcine ES-like cells did not undergo observable differentiation in vitro or in vivo. Cell lines with epithelial-like morphology were isolated from porcine and ovine embryos. Both porcine and ovine epithelial-like cell kines expressed cytokeratin 18. When induced to differentiate in vitro, porcine and ovine epithelial-like cell lines formed vesicular structures. Electron microscopy revealed that the porcine vesicles were composed of polarized epithelial cells, each with a basally-located nucleus and an apical border containing numerous microvilli with a well organized microfilament core. The results of this study show that conditions which allow isolation of ES cells from murine embryos allow the isolation of porcine embryo-derived cell lines sharing some, but not all, the characteristics of murine ES cells.  相似文献   

5.
6.
Bovine embryonic stem-like cells (ES-like cells) appear to maintain a normal diploid karyotype indefinitely during culture in vitro and to express marker proteins that are characteristic of ES cells from mice, namely, alkaline phosphatase (AP), stage-specific embryonic antigen-1 (SSEA-1), STAT-3, and Oct 4. After proliferation of undifferentiated ES-like cells in vitro, some bovine ES-like cells differentiated to neural precursor cells, which were cultured in the presence of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and platelet-derived growth factor (PDGF). In addition, calves were successfully cloned using ES-like cells and the frequency of term pregnancies for blastocysts derived from ES-like cells was higher than those of early pregnancies and maintained pregnancies after nuclear transplantation (NT) with bovine somatic cells. Successful cloning from bovine ES-like cells should allow the introduction into cattle of specific genetic characteristics of biomedical and/or agricultural importance.  相似文献   

7.
Mouse embryonic stem (ES) cells are widely used in developmental biology and transgenic research. Despite numerous studies, ultrastructural reorganization of inner cell mass (ICM) cells during in vitro culture has not yet been described in detail. Here, we for the first time performed comparative morphological and morphometric analyses of three ES cell lines during their derivation in vitro. We compared morphological characteristics of blastocyst ICM cells at 3.5 and 4.5 days post coitum on feeder cells (day 6, passage 0) with those of ES cells at different passages (day 19, passage 2; day 25, passage 4; and passage 15). At passage 0, there were 23–36% of ES-like cells with various values of the medium cross-sectional area and nucleocytoplasmic parameters, 55% of fibroblast-like (probably trophoblast derivatives), and ~?19% of dying cells. ES-like cells at passage 0 contained autolysosomes and enlarged mitochondria with reduced numerical density per cell. There were three types of mitochondria that differed in matrix density and cristae width. For the first time, we revealed cells that had two and sometimes three morphologically distinct mitochondria types in the cytoplasm. At passage 2, there were mostly ES cells with a high nucleocytoplasmic ratio and a cytoplasm depleted of organelles. At passage 4, ES cell morphology and morphometric parameters were mostly stable with little heterogeneity. According to our data, cellular structures of ICM cells undergo destabilization during derivation of an ES cell line with subsequent reorganization into the structures typical for ES cells. On the basis of ultrastructural analysis of mitochondria, we believe that the functional activity of these organelles changes during early stages of ES cell formation from the ICM.  相似文献   

8.
This study was conducted to establish pig embryonic stem (ES)-like cell lines from nuclear transfer blastocysts. A green fluorescent protein (GFP)-expressing cell line was used as the source of donor cells injected into the enucleated oocytes. Blastocysts were collected at D5 (the fifth day), D7 (the seventh day) and D9 (the ninth day). Differential staining was used to assay the viability and development of blastocysts from the 3 days. The number of inner cell mass (ICM) cells increased from 1.83 ± 0.8 (D5) to 5.37 ± 1.2 (D7) to 7.56 ± 1.5 (D9). The expression profiles of embryonic stem (ES) cell factors (OCT4, SOX2, KLF4 and c-MYC) correlated best with the undifferentiated ES state and were identified by qPCR. The expression of the four factors was increased from D5 to D7, whereas the expression decreased from D7 to D9. We tried to isolate ES-like cells from these embryos. However, ES-like cells from the D7 blastocysts grew slowly and expressed alkaline phosphatase. The cells from the D9 blastocysts grew rapidly but did not express alkaline phosphatase. ES-like cells were not isolated from the D5 blastocysts. These results show that the cells from the D7 embryos are pluripotent but grow slowly. The cells from the D9 embryos grow rapidly but start to lose pluripotency.  相似文献   

9.
Isolation of embryonic stem cells has been documented only in the mouse and perhaps the hamster and cow. We report results of experiments designed to determine the effect of age of porcine embryos (6 through 10 d after the first day of estrus) on isolation of cell lines with embryonic stem cell-like morphology. The capacity of fresh and short-term cultured inner cell mass (ICM) cells to differentiate into normal tissues after injection into blastocysts was also measured. Few Day-6 ICM survived in culture to the first passage onto fresh feeder cells, but cell lines with embryonic stem cell-like morphology developed from Day-7 through Day-10 ICM. Isolation of embryonic stem cell-like colonies was achieved at a higher frequency from ICM isolated from older embryos, but embryonic stem cell-like colonies from older embryos also tended to differentiate spontaneously in culture. Viable porcine chimeras were born after injection of fresh ICM into blastocysts that were transferred to recipients for development to term; no chimeras were born from blastocysts injected with ICM subjected to short-term (1 to 6 d) culture. Germ-cell chimerism was confirmed in one of the chimeras. These results document that undifferentiated cells can be removed from porcine blastocysts, transplanted to other embryos, and contribute to development of normal differentiated tissues, including germ cells. Cells with embryonic stem-like morphology can be isolated in culture from ICM at various embryonic ages, but ICM from young blastocysts (e.g., Day-7 embryos) yield embryonic stem cell-like colonies at lower frequency than do ICM from older blastocysts (e.g., Day-10 embryos).  相似文献   

10.
Pluripotency of isolated rabbit inner cell masses (ICMs) and cultured (3 days) inner cell mass (ICM) cells was tested by injecting these donor cells into day 3.5 blastocysts (experiment 1) or day 3 morulae (experiment 2) to produce chimeric embryos. Injected (n = 107) and noninjected (n = 103) embryos were transferred to the opposite uterine horns of the same recipient females. Chimerism was determined by adenosine deaminase (ADA) isozyme analysis on fetal tissue and by eye pigmentation at midgestation. In experiment 1, 53% and 64%, respectively, of blastocysts injected with ICMs or cultured ICM cells developed to midgestation, compared with 52% and 48% for controls. Of these fetuses, four (31%) and one (6%), respectively, had ADA chimerism. In experiment 2,38% and 62%, respectively, of the morulae injected with ICMs or cultured ICM cells developed to midgestation, compared with 46% and 56% for control morulae. Six (43%) chimeric fetuses from morulae injected with ICMs were detected by ADA analysis, but 12 (86%) chimeric fetuses were detected by eye pigmentation, indicating that eye pigmentation was a more sensitive marker for chimerism than our ADA assay. None of the 14 fetuses recovered after injecting morulae with cultured ICM cells were chimeric with either marker. No chimeras developed from control embryos. These studies demonstrate (1) that pregnancy rates are not compromised by injection of blastocysts or morulae with ICMs or cultured ICM cells, (2) that chimeric rabbit fetuses can be produced by injecting ICMs into either blastocysts or morulae, and (3) that cultured ICM cells can contribute to embryonic development when injected into blastocysts. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Embryonic stem (ES) cells are pluripotent cells with the capacity to generate any type of cell. Here we describe the isolation of ES-like cells from canine blastocysts. Canine embryos were collected from beagle bitches at day 11-16 of first estrus. A total of 80 normal embryos were obtained from 15 dogs. Of the embryos, 13 were at the morulae stage, 39 at the blastocyst stage, and 28 at the hatched blastocyst stage. The inside of morulae or inner cell masses (ICMs) of blastocysts were isolated mechanically, and cultured onto mouse embryonic fibroblasts (MEF) as feeder layers. Primary cell colonies were formed in 0% (0/13) of morulae, 25.6% (10/39) of blastocysts, and 67.9% (19/28) of hatched blastocysts. These colonies were separated either by enzymatic dissociation or by mechanical disaggregation. Dissociation with collagenase resulted in immediate differentiation, but with mechanical disaggregation these cells remained undifferentiated, and two ES-like cell lines (cES1, cES2) continued to grow in culture after eight passages. These cells had typical stem cell-like morphology and expressed specific markers such as alkaline phosphatase activity, stage specific embryonic antigen-1 and Oct-4. These cells formed embryoid bodies (EBs) in a suspension culture; extended culture of EBs resulted in the formation of cystic EBs. When the simple EBs were cultured on tissue culture plates, they differentiated into several types of cells including neuron-like, epithelium-like, fibroblast-like, melanocyte-like, and myocardium-like cells. These observations indicate that we successfully isolated and characterized canine ES-like cells.  相似文献   

12.
13.
The hypothesis was tested that the pluripotency of the inner cell mass (ICM) of the bovine embryo is enhanced by the glycogen synthase kinase-3β inhibitor CHIR99021 and the MAPK1 and MAPK3 inhibitor PD032591. Treatment with the two inhibitors from Days 6 to 8 after insemination increased blastocyst steady state concentrations of mRNA for NANOG (P < 0.05) and SOX2 (P = 0.055) and tended to decrease (P = 0.09) expression of GATA6. To evaluate pluripotency, the inner cell mass was isolated by immunosurgery at Day 8, seeded on a feeder layer of bovine embryonic fibroblasts, and cultured in the presence of the inhibitors. Ten of 52 (19%) ICM from control embryos had primary outgrowth formation vs. 23 of 50 (46%) of the ICM from embryos cultured with inhibitors (P < 0.01). For ICM outgrowths from embryos cultured without inhibitors, colonies either did not persist through Passage 2 or became differentiated. In contrast, for the inhibitor group, four colonies survived beyond Passage 2, and one line persisted for 19 passages. This cell line possessed alkaline phosphatase activity, expressed several genes characteristically expressed in pluripotent cells, and differentiated into embryoid bodies when cultured in the absence of the signal transduction inhibitors and the feeder layer. Propagation of the cells was difficult due to slow growth and inefficiency in survival through each passage. In conclusion, exposure to inhibitors during the morula-blastocyst transition facilitated formation of self-renewing pluripotent cell lines from bovine blastocysts.  相似文献   

14.
Inner cell masses (ICM) and embryonic discs from bovine and porcine blastocysts of various ages were transplanted under the kidney capsule of athymic (nude) mice to evaluate growth of teratocarcinomas containing both differentiated tissues and undifferentiated stem cells. Inner cell masses were isolated immunosurgically from Day 8, Day 9 and Day 10 porcine blastocysts and from Day 8, Day 10 and Day 12 bovine blastocysts. Embryonic discs were mechanically dissected from Day 11 and Day 12 porcine embryos and from Day 14 bovine embryos. Day 6 egg cylinders were dissected from embryos and from hybrid embryos of a cross between BALB/C and an outbred strain of mouse. Two to four ICM, embryonic discs or egg cylinders were transplanted under the kidney capsule of each athymic host. After 8 weeks, graft hosts were killed and their tumors removed, fixed and prepared for histological and immunohistochemical examination. Embryonic teratomas developed at high frequency from murine egg cylinders and from Day 11 and Day 12 porcine and Day 14 bovine embryos. Tumors were observed only infrequently from younger bovine and porcine blastocysts. Murine embryonic tumors were composed of numerous differentiated cell types of ectodermal, mesodermal and endodermal origins, but representation of the three embryonic germ layers was somewhat more restricted in bovine and porcine embryonic tumors. No undifferentiated stem cells were detected in tumors of any of the three species. These results demonstrate that teratomas will develop from bovine and porcine embryos when grafted to an immunocompromised host, but the presence of undifferentiated teratocarcinoma stem cells from these species has yet to be achieved.  相似文献   

15.
Experiments were conducted to determine the effects of feeder layers composed of different cell types on the efficiency of isolation and the behavior of porcine embryo-derived cell lines. Inner cell masses (ICM) isolated from 7- to 8-d-old embryos were plated on feeder layers composed of Buffalo rat liver cells (BRL), a continuous cell line of murine embryonic fibroblasts (STO), STO combined with BRL at a 9:1 and 1:1 ratio, STO with BRL-conditioned medium (STO + CM), porcine embryonic fibroblasts (PEF), PEF combined with BRL at a 9:1 and 1:1 ratio, porcine uterine epithelial cells (PUE), murine embryonic fibroblasts (MEF), or an epithelial-like porcine embryo-derived cell line (PH3A). It was found that embryo-derived cell lines could be isolated only from the STO and the STO with BRL-conditioned medium treatments. The isolated cell lines were of epithelial-like and embryonic stem cell-like (ES-like) morphology. The feeders tested had an effect on the behavior of plated ICM. Some feeders, represented by PUE, BRL, STO:BRL (1:1), PEF:BRL (1:1), and PH3A, did not promote attachment of the ICM to the feeder layer; others, represented by STO and MEF, allowed attachment, differentiation and proliferation. On PEF feeders the ICM spread onto the feeder layer after attachment without apparent signs of proliferation or differentiation. None of the feeders tested increased the efficiency of isolation or the growth characteristics of embryo-derived (both ES-like and epithelial-like) cell lines over that of STO feeders.  相似文献   

16.
The morphology and proportion of inner cell mass (ICM) of bovine blastocysts cultured in vitro or in vivo in rabbit oviducts after in-vitro fertilization of in-vitro matured follicular oocytes were compared with those of blastocysts fertilized in vivo by a differential fluorochrome staining technique. The delineation of each ICM cell was improved by the transfer of embryos derived from in-vitro fertilization to a rabbit oviduct although the cell-cell contacts of ICM cells were not as tight as those from in-vivo fertilization. The proportions (15.8 and 14.9%) of ICM in blastocysts cultured in vitro at early and expanded stages were significantly lower than those cultured in rabbit oviducts after in-vitro fertilization and fertilized in vivo. These results show that the transfer of bovine embryos derived from in-vitro fertilization to the rabbit oviduct increased the proliferation of ICM cells to the level of embryos fertilized in vivo although the cell-cell contact of ICM cell is not improved by the process.  相似文献   

17.
Variable conditions were tested to determine an in-vitro cultivation method for the formation of morphologically undifferentiated embryonic stem cells from the inner cell mass (ICM) derived outgrowth of porcine blastocysts. Although all 16 Day-9 embryos failed to form colonies, 14 such colonies were obtained from a total of 69 Day-10 embryos when they were co-cultivated with porcine uterine fibroblast (PUF) cells over a 6-day period. The best results were obtained in Dulbecco's modified Eagle medium (DMEM) with 10% fetal calf serum and 10% porcine serum supplemented with bovine insulin and beta-mercaptoethanol, in which six out of seven embryos formed adequate ICM-derived colonies. Since murine fibroblasts were not found to be suitable feeder cells in this procedure, an endocrine synergistic interaction, which promotes embryonic attachment and colony formation, between porcine blastocysts and PUF cells is hypothesized. Continued propagation of the ICM-derived cells was not dependent on these factors; a total of seven cell lines were obtained after three to five subsequent passages on murine feeder-layers that resembled morphologically undifferentiated embryonic cells.  相似文献   

18.
Goat embryonic stem (ES)-like cells could be isolated from primary materials-inner cell masses (ICMs) and remain undifferentiated for eight passages in a new culture system containing mouse ES cell conditioned medium (ESCCM) and on a feeder layer of mouse embryo fibroblasts (MEFs). However, when cultured in medium without mouse ESCCM, goat ES-like cells could not survive for more than three passages. In addition, no ES-like cells could be obtained when ICMs were cultured on goat embryo fibroblasts or the primary materials-whole goat blastocysts were cultured on MEFs. Goat ES-like cells isolated from ICMs had a normal karyotype and highly expressed alkaline phosphatase. Multiple differentiation potency of the ES-like cells was confirmed by differentiation into neural cells and fibroblast-like cells in vitro. These results suggest that mouse ES cells might secrete factors playing important roles in promoting goat ES-like cells' self-renewal, moreover, the feeder layers and primary materials could also influence the successful isolation of goat ES-like cells.  相似文献   

19.
We report the generation of stable cell lines obtained by spontaneous immortalization of primary cultures of porcine granulosa cells. Three hundred stable cell lines were obtained from three independent immortalization trials. Two of these cell lines retained the steroidogenic capabilities characteristic of granulosa cells, such as de novo synthesis of progesterone and conversion of androstenedione into estradiol-17beta. All the stable cell lines expressed the P450arom and 3betaHSD genes, confirming their granulosa origin. Moreover, the steroidogenic stable granulosa cells also expressed StAR and P450scc genes. Stable cells were developed in cultures using Medium 199 supplemented with 5% newborn calf serum (NBCS). The surviving cells overcame the senescent phase and entered a stage of continuous growth for over one hundred generations. No stable colonies were obtained from cultures grown in MEM or DMEM or media supplemented with 10% NBCS or 5 and 10% fetal calf serum (FCS). Medium 199 is a formulation richer in nutrients compared to MEM or DMEM and the cell growth capability of NBCS is lower than that of FCS, probably due to deficiency of growth factors. We speculate that spontaneous immortalization of granulosa cells may be facilitated by using a rich culture formulation supplemented with low concentrations of serum deficient in growth factors. We have validated the stable cell lines for studying the effect of hormonal steroids on granulosa cell steroidogenesis and the expression of the steroidogenic genes. Therefore, we believe that they are useful models to study the molecular mechanism involved in granulosa cell differentiation and steroidogenesis.  相似文献   

20.
The present study was conducted to isolate and culture inner cell mass (ICM) primarily derived from in vitro-produced blastocysts and to develop the culture conditions for the ICM cells. In Experiment 1, immunosurgically isolated ICMs of blastocysts derived from in vitro fertilization (IVF), somatic cell nuclear transfer (SCNT) or parthenogenetic activation (PA) were seeded onto STO cells. Primary colonies from each isolated ICM were formed with a ratio of 28.9, 30.0 and 4.9%, respectively. In Experiment 2, blastocysts collected from IVF were directly seeded onto a feeder layer with or without zona pellucida (ZP), or were subjected to ICM isolation by immunosurgery. Primary colonies were formed in 36.8% of isolated ICMs and 19.4% in intact blastocysts without ZP. In Experiment 3, ICMs from IVF blastocysts were seeded onto STO cells, mouse embryonic fibroblast (MEF) or porcine uterine epithelial cells (PUEC). On STO and MEF cells, 34.5 and 22.2% of primary colonies were formed, respectively. However, no primary colony was formed on the PUEC or in feeder-free condition. In Experiment 4, ICMs from IVF blastocysts were cultured in DMEM + Ham's F10 (D/H medium), DMEM + NCSU-23 (D/N medium) or DMEM alone. When D/H medium or D/N medium was used, 21.7 or 44.4% of primary colony were formed, respectively, while no primary colony was formed in DMEM alone. These cells showed alkaline phosphatase activity and could be maintained for up to five passages. In suspension culture, cells formed embryoid bodies. These results demonstrate that porcine ICM could be isolated and cultured primarily from in vitro-produced blastocysts with a suitable culture system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号