首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse embryonic fibroblasts (MEFs) were used to establish human embryonic stem cells (hESCs) cultures after blastocyst isolation1. This feeder system maintains hESCs from undergoing spontaneous differentiation during cell expansion. However, this co-culture method is labor intensive, requires highly trained personnel, and yields low hESC purity4. Many laboratories have attempted to minimize the number of feeder cells in hESC cultures (i.e. incorporating matrix-coated dishes or other feeder cell types5-8). These modified culture systems have shown some promise, but have not supplanted the standard method for culturing hESCs with mitomycin C-treated mouse embyronic fibroblasts in order to retard unwanted spontaneous differentiation of the hESC cultures. Therefore, the feeder cells used in hESC expansion should be removed during differentiation experiments. Although several techniques are available for purifying the hESC colonies (FACS, MACS, or use of drug resistant vectors) from feeders, these techniques are labor intensive, costly and/or destructive to the hESC. The aim of this project was to invent a method of purification that enables the harvesting of a purer population of hESCs. We have observed that in a confluent hESC culture, the MEF population can be removed using a simple and rapid aspiration of the MEF sheet. This removal is dependent on several factors, including lateral cell-to-cell binding of MEFs that have a lower binding affinity to the styrene culture dish, and the ability of the stem cell colonies to push the fibroblasts outward during the generation of their own "niche". The hESC were then examined for SSEA-4, Oct3/4 and Tra 1-81 expression up to 10 days after MEF removal to ensure maintenance of pluripotency. Moreover, hESC colonies were able to continue growing from into larger formations after MEF removal, providing an additional level of hESC expansion.  相似文献   

2.
目的:建立一种从废弃胚胎中提高囊胚形成率和质量的培养体系,寻找多种促进内细胞团(ICM)数目增多、贴壁、增值的方法,提高人胚胎干细胞(human embryonic stem cell,hESC)建系效率,建立人胚胎干细胞库。方法:将179枚IVFDay3废弃的胚胎放入优选培养体系中培养(G2.5培养液中添加10%人血清蛋白,人白细胞抑制生长因子(hLIF),碱性成纤维细胞生长因子(bFGF))。到Day7将形成的囊胚全部用机械法分离ICM,接种于丝裂霉素C灭活处理的原代小鼠胚胎成纤维细胞(MEF)上,培养8-9天,每4-5天传代1次。结果:优选培养体系的囊胚形成率为29.1%(52/179),其中A级囊胚形成率为11.2%(20/179),50个ICM贴壁生长,20个出现克隆形态,成功建立11株hESC(FY-hES-11至FY-hES-21)。11株hESC均具有共同的多能性生物学特性。结论:优选培养体系可以明显提高囊胚形成的质量,促进ICM的增值,纯熟的机械切割法可以避免损伤ICM并提高其贴壁率,原代灭活的MEF饲养层可以明显促进细胞增殖。  相似文献   

3.
Poor quality embryos discarded from in vitro fertilization (IVF) laboratories are good sources for deriving human embryonic stem cell (hESC) lines. In this study, 166 poor quality embryos donated from IVF centers on day 3 were cultured in a blastocyst medium for 2 days, and 32 early blastocysts were further cultured in a blastocyst optimum culture medium for additional 2 days so that the inner cell masses (ICMs) could be identified and isolated easily. The ICMs of 17 blastocysts were isolated by a mechanical method, while those of the other 15 blastocysts were isolated by immunosurgery. All isolated ICMs were inoculated onto a feeder layer for subcultivation. The rates of ICM attachment, primary ICM colony formation and the efficiency of hESC derivation were similar between the ICMs isolated by the two methods (P〉0.05). As a result, four new hESC lines were established. Three cell lines had normal karyotypes and one had an unbalanced Robertsonian translocation. All cell lines showed normal hESC characteristics and had the differentiation ability. In conclusion, we established a stable and effective method for hESC isolation and culture, and it was confirmed that the mechanical isolation was an effective method to isolate ICMs from poor embryos. These results further indicate that hESC lines can be derived from poor quality embryos discarded by IVF laboratories.  相似文献   

4.
The culture of human embryonic stem cells (hESCs) is limited, both technically and with respect to clinical potential, by the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. The concern over xenogeneic contaminants from the mouse feeder cells may restrict transplantation to humans and the variability in MEFs from batch-to-batch and laboratory-to-laboratory may contribute to some of the variability in experimental results. Finally, use of any feeder layer increases the work load and subsequently limits the large-scale culture of human ES cells. Thus, the development of feeder-free cultures will allow more reproducible culture conditions, facilitate scale-up and potentiate the clinical use of cells differentiated from hESC cultures. In this review, we describe various methods tested to culture cells in the absence of MEF feeder layers and other advances in eliminating xenogeneic products from the culture system.  相似文献   

5.
Embryonic stem (ES) cell lines are routinely derived from in vivo produced blastocysts. We investigated the efficiency of ES cells derivation from in vitro produced blastocysts either in monoculture or sequential culture. Zygotes from hybrid F1 B6D2 mice were cultured in vitro to the blastocyst stage in Potassium (K(+)) simplex optimised medium (KSOM) throughout or in KSOM and switched to COOK blastocyst medium on day 3 (KSOM-CBM). Blastocysts were explanted on a feeder layer of mitomycin C-inactivated murine embryonic fibroblasts (MEF) in TX-WES medium for ES cell derivation. Sequential KSOM-CBM resulted in improved blastocyst formation compared to KSOM monoculture. ES cells were obtained from 32.1% of explanted blastocsyts cultured in KSOM-CBM versus 18.4% in KSOM alone. ES cell lines were characterized by morphology, expression of SSEA-1, Oct-4 and alkaline phosphatase activity, and normal karyotype. These results indicate that in vitro culture systems to produce blastocysts can influence the efficiency of ES cell line derivation.  相似文献   

6.
Human embryonic stem cells (hESCs) can serve as an unlimited cell source for cellular transplantation and tissue engineering due to their prolonged proliferation capacity and their unique ability to differentiate into derivatives of all three-germ layers. In order to reliably and safely produce hESCs, use of reagents that are defined, qualified, and preferably derived from a non-animal source is desirable. Traditionally, mouse embryonic fibroblasts (MEFs) have been used as feeder cells to culture undifferentiated hESCs. We recently reported a scalable feeder-free culture system using medium conditioned by MEFs. The base and conditioned medium (CM) still contain unknown bovine and murine-derived components, respectively. In this study, we report the development of a hESC culture system that utilizes a commercially available serum-free medium (SFM) containing human sourced and recombinant proteins supplemented with recombinant growth factor(s) and does not require conditioning with feeder cells. In this system, which employs human laminin coated surface and high concentration of hbFGF, the hESCs maintained undifferentiated hESC morphology and had a twofold increase in expansion compared to hESCs grown in MEF-CM. The hESCs also expressed surface markers SSEA-4 and Tra-1-60 and maintained expression of hTERT, Oct4, and Cripto genes similar to cells cultured in MEF-CM. In addition, hESCs maintained in this culture system were able to differentiate in vitro and in vivo into cells of all three-germ layers. The cells maintained a normal karyotype after prolonged culture in SFM. In summary, this study demonstrates that the hESCs cultured in defined non-conditioned serum-free medium (NC-SFM) supplemented with growth factor(s) retain the characteristics and replicative potential of hESCs. The use of defined culture system with NC-SFM on human laminin simplifies scale-up and allows for reproducible generation of hESCs under defined and controlled conditions that would serve as a starting material for production of hESC derived cells for therapeutic use.  相似文献   

7.
Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal.  相似文献   

8.
Various types of feeder cells have been adopted for the culture of human embryonic stem cells (hESCs) to improve their attachment and provide them with stemness-supporting factors. However, feeder cells differ in their capacity to support the growth of undifferentiated hESCs. Here, we compared the expression and secretion of four well-established regulators of hESC pluripotency and/or differentiation among five lines of human foreskin fibroblasts and primary mouse embryonic fibroblasts throughout a standard hESC culture procedure. We found that human and mouse feeder cells secreted comparable levels of TGF beta 1. However, mouse feeder cells secreted larger quantities of activin A than human feeder cells. Conversely, FGF-2, which was produced by human feeder cells, could not be detected in culture media from mouse feeder cells. The quantity of BMP-4 was at about the level of detectability in media from all feeder cell types, although BMP-4 dimers were present in all feeder cells. Production of TGF beta 1, activin A, and FGF-2 varied considerably among the human-derived feeder cell lines. Low- and high-producing human feeder cells as well as mouse feeder cells were evaluated for their ability to support the undifferentiated growth of hESCs. We found that a significantly lower proportion of hESCs maintained on human feeder cell types expressed SSEA3, an undifferentiated cell marker. Moreover, SSEA3 expression and thus the pluripotent hESC compartment could be partially rescued by addition of activin A. Cumulatively, these results suggest that the ability of a feeder layer to promote the undifferentiated growth of hESCs is attributable to its characteristic growth factor production.  相似文献   

9.
Human embryonic stem cell (hESC) lines are derived from the inner cell mass (ICM) of preimplantation human blastocysts obtained on days 5–6 following fertilization. Based on their derivation, they were once thought to be the equivalent of the ICM. Recently, however, studies in mice reported the derivation of mouse embryonic stem cell lines from the epiblast; these epiblast lines bear significant resemblance to human embryonic stem cell lines in terms of culture, differentiation potential and gene expression. In this study, we compared gene expression in human ICM cells isolated from the blastocyst and embryonic stem cells. We demonstrate that expression profiles of ICM clusters from single embryos and hESC populations were highly reproducible. Moreover, comparison of global gene expression between individual ICM clusters and human embryonic stem cells indicated that these two cell types are significantly different in regards to gene expression, with fewer than one half of all genes expressed in both cell types. Genes of the isolated human inner cell mass that are upregulated and downregulated are involved in numerous cellular pathways and processes; a subset of these genes may impart unique characteristics to hESCs such as proliferative and self-renewal properties.  相似文献   

10.
The evolution of "humanized" (i.e., free of animal sourced reagents) and ultimately chemically defined culture systems for human embryo stem cell (hESC) isolation and culture is of importance to improving their efficacy and safety in research and therapeutic applications. This can be achieved by integration of a multitude of individual approaches to replace or eliminate specific animal sourced reagents into a single comprehensive protocol. In the present study our objective was to integrate strategies obviating reliance on some of the most poorly defined and path-critical factors associated with hESC derivation, namely the use of animal immune compliment to isolate embryo inner cell mass, and animal sourced serum products and feeder cells to sustain hESC growth and attachment. As a result we report the derivation of six new hESC lines isolated by outgrowth from whole blastocysts on an extracellular matrix substrate of purified human laminin (Ln) with transitional reliance on mitotically inactivated human fibroblast (HDF) feeder cells. With this integrated system hESC lines were isolated using either HDF conditioned medium supplemented with a bovine-sourced serum replacement (bSRM), or a defined serum-free medium (SFM) containing only human sourced and recombinant protein. Further, outgrowth of embryonic cells from whole blastocysts in both media could be achieved for up to 1 week without reliance on feeder cells. All variant conditions sustained undifferentiated cell status, a stable karyotype and the potential to form cells representative of all three germinal lineages in vitro and in vivo, when transitioned off of feeders onto Laminin or Matrigel. Our study thus demonstrates the capacity to integrate derivation strategies eliminating a requirement for animal immune compliment and serum products, with a transitional requirement for human feeder cells. This represents another sequential step in the generation of therapeutic grade stem cells with reduced risk of zoonotic pathogen transmission.  相似文献   

11.
12.
In this study, we focused on the derivation of human embryonic stem cell (hESC) from preimplantation genetic screening (PGS)-analyzed and preimplantation genetic diagnosis (PGD)-analyzed embryos. Out of 62 fresh PGD/PGS-analyzed embryos, 22 embryos reached the blastocyst stage. From 12 outgrowth blastocysts, we derived four hESC lines onto a feeder layer. Surprisingly, karyotype analysis showed that hESC lines derived from aneuploid embryos had diploid female karyotype. One hESC line was found to carry a balanced Robertsonian translocation. All the cell lines showed hESC markers and had the pluripotent ability to differentiate into derivatives of the three embryonic germ layers. The established lines had clonal propagation with 22–31% efficiency in the presence of ROCK inhibitor. These results further indicate that hESC lines can be derived from PGD/PGS-analyzed embryos that are destined to be discarded and can serve as an alternative source for normal euploid lines.  相似文献   

13.
Fibroblast feeder cells play an important role in supporting the derivation and long term culture of undifferentiated, pluripotent human embryonic stem cells (hESCs). The feeder cells secrete various growth factors and extracellular matrix (ECM) proteins into extracellular milieu. However, the roles of the feeder cell-secreted factors are largely unclear. Animal feeder cells and use of animal serum also make current feeder cell culture conditions unsuitable for derivation of clinical grade hESCs. We established xeno-free feeder cell lines using human serum (HS) and studied their function in hESC culture. While human foreskin fibroblast (hFF) feeder cells were clearly hESC supportive, none of the established xeno-free human dermal fibroblast (hDF) feeder cells were able to maintain undifferentiated hESC growth. The two fibroblast types were compared for their ECM protein synthesis, integrin receptor expression profiles and key growth factor secretion. We show that hESC supportive feeder cells produce laminin-511 and express laminin-binding integrins α3ß1, α6ß1 and α7ß1. These results indicate specific laminin isoforms and integrins in maintenance of hESC pluripotency in feeder-dependent cultures. In addition, several genes with a known or possible role for hESC pluripotency were differentially expressed in distinct feeder cells.  相似文献   

14.
Objective:  Spontaneous differentiation of human embryonic stem cell (hESC) cultures is a major concern in stem cell research. Physical removal of differentiated areas in a stem cell colony is the current approach used to keep the cultures in a pluripotent state for a prolonged period of time. All hESCs available for research require unidentified soluble factors secreted from feeder layers to maintain the undifferentiated state and pluripotency. Under experimental conditions, stem cells are grown on various matrices, the most commonly used being Matrigel.
Materials and Methods:  We propose an alternative method to prevent spontaneous differentiation of hESCs grown on Matrigel that uses low amounts of recombinant noggin. We make use of the porosity of Matrigel to serve as a matrix that traps noggin and gradually releases it into the culture to antagonize bone morphogenetic proteins (BMP). BMPs are known to initiate differentiation of hESCs and are either present in the conditioned medium or are secreted by hESCs themselves.
Results:  hESCs grown on Matrigel supplemented with noggin in conditioned medium from feeder layers (irradiated mouse embryonic fibroblasts) retained both normal karyotype and markers of hESC pluripotency for 14 days. In addition, these cultures were found to have increased cell proliferation of stem cells as compared to hESCs grown on Matrigel alone.
Conclusion:  Noggin can be utilized for short term prevention of spontaneous differentiation of stem cells grown on Matrigel.  相似文献   

15.
通过人-牛异种核移植技术获得异种克隆囊胚, 便于在不消耗人类卵母细胞的情况下从异种克隆胚中分离出人类干细胞。通过透明带下注射法将人胎儿成纤维细胞和牛耳成纤维细胞分别注入去核牛卵母细胞中构建异种和同种胚胎, 并比较两者之间的融合率、卵裂率、8-细胞发育率以及囊胚率。并对处于2-细胞、4-细胞、8-细胞、桑椹胚、囊胚阶段的异种克隆胚的线粒体DNA来源进行检测。结果表明, 异种克隆胚体外各个阶段的发育率均低于同种克隆胚, 尤其是8-细胞到囊胚阶段的发育率, 以及囊胚率都显著低于同种克隆胚(P<0.05)。异种克隆胚在2-细胞到桑椹胚阶段检测到人、牛线粒体DNA共存, 囊胚阶段只检测到牛线粒体DNA。结果表明: 牛卵母细胞可以重编程人胎儿成纤维细胞, 完成异种克隆胚植入前的胚胎发育, 异种克隆胚由于核质相互作用的不谐调, 影响其发育能力, 使其囊胚率显著低于同种克隆胚。牛线粒体DNA存在于植入前异种胚胎发育的各个阶段。异种克隆胚胎用于人类胚胎干细胞分离具有可行性。  相似文献   

16.
Human embryonic stem cells(hESCs) can self-renew indefinitely and differentiate into all cell types in the human body.Therefore,they are valuable in regenerative medicine,human developmental biology and drug discovery.A number of hESC lines have been derived from the Chinese population, but limited of them are available for research purposes.Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin.These hESCs express alkaline phosphatase and hE...  相似文献   

17.
18.
Here, we describe the derivation of a novel human embryonic stem cell (hESC) line, Endeavour-2 (E-2), propagated on human fetal fibroblasts (HFF) in a serum-replacement media. The inner cell mass (ICM) was manually dissected from the blastocyst without using immunodissection and, therefore, antibodies from animal sources. A total of 20 embryos were thawed and cultured, eight embryos were hatched, and five ICMs were obtained. They were transferred onto HFF used as feeder layer, and one colony representing the initial cell proliferation of a new hESC line, E-2, was obtained. The newly emerged hESC colony was passaged first by physical dissection and subsequently by enzymatic dissociation. E-2 has been in culture for over 6 months and has been shown to possess typical features of a pluripotent hESC line including expression of stem cell surface markers (SSEA4, TRA-160, and integrin alpha-6), intracellular alkaline phosphatase, and pluripotency gene markers, OCT4 and NANOG. This hESC line shows lineage-specific differentiation into various representative cell types expressing markers characteristic of the three somatic germ layers under both in vitro and in vivo conditions. E-2 line shows a normal karyotype (46 XX) and has been successfully cryopreserved and thawed several times using slow-freezing procedures. E-2 adds to the repertoire of existing hESC lines for research and development purposes in the field of regenerative medicine.  相似文献   

19.
Elucidating the complex combinations of growth factors and signaling molecules that maintain pluripotency or, alternatively, promote the controlled differentiation of human embryonic stem cells (hESCs) has important implications for the fundamental understanding of human development, devising cell replacement therapies, and cancer cell biology. hESCs are commonly grown on irradiated mouse embryonic fibroblasts (MEFs) or in conditioned medium from MEFs. These culture conditions interfere with many experimental conclusions and limit the ability to perform conclusive proteomics studies. The current investigation avoided the use of MEFs or MEF-conditioned medium for hESC culture, allowing global proteomics analysis without these confounding conditions, and elucidated neural cell-specific signaling pathways involved in noggin-induced hESC differentiation. Based on these analyses, we propose the following early markers of hESC neural differentiation: collapsin response mediator proteins 2 and 4 and the nuclear autoantigenic sperm protein as a marker of pluripotent hESCs. We then developed a directed mass spectrometry assay using multiple reaction monitoring (MRM) to identify and quantify these markers and in addition the epidermal ectoderm marker cytokeratin-8. Analysis of global proteomics, quantitative RT-PCR, and MRM data led to testing the isoform interference hypothesis where redundant peptides dilute quantification measurements of homologous proteins. These results show that targeted MRM analysis on non-redundant peptides provides more exact quantification of homologous proteins. This study describes the facile transition from discovery proteomics to targeted MRM analysis and allowed us to identify and verify several potential biomarkers for hESCs during noggin-induced neural and BMP4-induced epidermal ectoderm differentiation.  相似文献   

20.
Human embryonic stem cells (hESCs) are derived from the inner cell mass (ICM) of blastocyst staged embryos. Spare blastocyst staged embryos were obtained by in vitro fertilization (IVF) and donated for research purposes. hESCs carrying specific mutations can be used as a powerful cell system in modeling human genetic disorders. We obtained preimplantation genetic diagnosed (PGD) blastocyst staged embryos with genetic mutations that cause human disorders and derived hESCs from these embryos. We applied laser assisted micromanipulation to isolate the inner cell mass from the blastocysts and plated the ICM onto the mouse embryonic fibroblast cells. Two hESC lines with lesions in FOXP3 and NF1 were established. Both lines maintain a typical undifferentiated hESCs phenotype and present a normal karyotype. The two lines express a panel of pluripotency markers and have the potential to differentiate to the three germ layers in vitro and in vivo. The hESC lines with lesions in FOXP3 and NF1 are available for the scientific community and may serve as an important resource for research into these disease states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号