首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
目的:观察一次性力竭运动过程及恢复期大鼠纹状体细胞外液中多巴胺(DA)和5-羟色胺(5-HT)及其代谢物浓度的动态变化规律。方法:采用活体微透析结合毛细管电泳.激光诱导技术,连续观察清醒大鼠在一次性力竭运动过程及恢复期纹状体细胞外液中酪氨酸(Tyr)、5-HT、5-羟吲哚乙酸(5-HIAA)、色氨酸(Trp)和DA浓度的动态变化。结果:大鼠纹状体细胞外液中TW、5-HT、5-HIAA水平运动初期均未见显著变化(P〉0.05),运动后期、力竭及恢复期均显著高于安静水平(P〈0.05,P〈0.01);DA、Tyr水平在运动后期、力竭及恢复期显著高于安静水平(P〈0.05,P〈0.01);DA/5-HT运动初期显著升高(P〈0.05,P〈0.01),运动后期出现下降趋势,力竭前15min降至最低点。而恢复期略有回升,但运动后期、力竭及恢复期与安静状态相比均无显著差异。结论:力竭运动过程中大鼠纹状体细胞外液中DA和5-HT的动态变化具有阶段性特征,运动疲劳过程中状体内DA和5-HT两种神经递质的代谢水平均显著增强,而其中以5-HT的作用占优。  相似文献   

2.
目的:探讨复方中药对运动大鼠中枢神经递质含量的影响,进一步认识中药提高运动能力和促进运动性疲劳恢复的作用机理。方法:选8周龄大鼠64只,随机分成服药组和对照组,服药组灌服中药煎剂8周。然后,每组再分成4个亚组分别于不同状态下断头处死,测其中枢递质含量。结果:服药组大鼠力竭运动时间极显著长于对照组(P〈0.01);安静时,除谷氨酸(GLU)含量服药组极显著高于对照组(P〈0.01)外、其余各指标无组间显著性差异;定量负荷后,服药组5-羟色胺(5-HT)、5-羟吲哚乙酸(5-HIAA)、弘氨基丁酸(GABA)、多巴胺(DA)含量和5-HT/5-HIAA显著低于对照组,GLU、GLU/GABA和DA/5-HT明显高于对照组;力竭即刻,服药组5-HT、GABA含量和5-HT/5-mAA显著低于对照组(P〈0.05),GLU含量、DA/5-HT和GLU/GABA显著高于对照组(P〈0.05);恢复12h。服药组5-HT含量和5-HT/5-HIAA极显著低于对照组(P〈0.01),GLU、DA、GABA含量和DA/5-HT明显高于对照组(P〈0.05)。结论:在大鼠运动至力竭性的过程中,复方中药制剂有明显抑制5-HT、5-HIAA、DA、GABA生成和促进GLU中枢递质合成的作用,其综合效应表现为兴奋性递质相对显著增多,使中枢神经兴奋性增强、明显延长大鼠运动时间和促进中枢疲劳的恢复。  相似文献   

3.
目的:研究脉冲电流经皮刺激肝区对运动性疲劳大鼠大脑纹状体5-羟色胺(5-HT)及其代谢的影响。方法:8周龄Wistar雄性大鼠80只随机分为安静对照组(CG组)、疲劳训练组(FG组)、运动后刺激组(SAF组)、运动前刺激组(SBF组),除CG组外各组均进行游泳训练,建立运动疲劳模型,于第1、3、5周训练的最后1d,断头处死,取外周血测游离色氨酸(F-Trp)、支链氨基酸(BCAA)、F-Trp/BCAA含量,取纹状体测F-Trp、5-HT、5-羟吲哚乙酸(5-HIAA)含量。结果:与CG组相比,各组大鼠血清BCAA含量呈下降趋势,其余各指标均呈升高趋势;与FG组相比,SAF组、SBF组第3周末纹状体5-HT明显下降(P0.01);与SBF组相比,SAF组第5周末纹状体5-HT明显下降(P0.05)。结论:经皮脉冲电流刺激具有降低疲劳大鼠5-HT及代谢产物的含量,有助于疲劳的消除,对长时间运动时中枢机能的改善具有积极作用。  相似文献   

4.
目的:通过观察一次性力竭运动过程中大鼠"黑质-丘脑-皮层"通路核团间神经元电活动的相干性及各核团神经递质谷氨酸(Glu)和γ-氨基丁酸(GABA)的浓度,探讨运动疲劳发生过程中大鼠"黑质-丘脑-皮层"通路神经元电活动的可能机制。方法:40只雄性Wistar大鼠,随机分为神经元电活动实时测定组、黑质网状部(SNr)神经元胞外神经递质实时测定组、丘脑腹外侧核(VL)神经元胞外神经递质实时测定组及皮层辅助运动区(SMA)神经元胞外神经递质实时测定组(n=10)。大鼠提供3级递增负荷跑台运动方案进行一次性力竭运动,通过自身对照,观察神经元电活动实时测定组大鼠SNr、VL及SMA神经元细胞在一次性力竭运动前、中、后神经元电活动的动态变化,同步、动态观察神经元胞外神经递质实时测定组大鼠一次性力竭运动前、中、后大鼠SNr、VL及SMA胞外Glu和GABA的浓度及其比值变化。结果:黑质网状部、丘脑腹外侧核局部场电与皮层脑电在力竭运动过程的不同阶段脑区之间神经元电活动,在0~30 Hz范围内均存在显著相干性。与安静状态相比较,自主运动期,大鼠黑质网状部神经元胞外Glu浓度、Glu/GABA比值均显著下降(P0.05,P0.01),GABA浓度则显著升高(P0.05,P0.01),而丘脑腹外侧核及皮层辅助运动区神经元胞外Glu浓度、Glu/GABA比值均显著升高(P0.05,P0.01),GABA浓度则显著下降(P0.05,P0.01);疲劳初期和力竭期,大鼠黑质网状部神经元胞外Glu浓度、Glu/GABA比值均显著升高(P0.05,P0.01),GABA浓度则显著下降(P0.05,P0.01),而丘脑腹外侧核及皮层辅助运动区神经元胞外Glu浓度、Glu/GABA比值均显著下降(P0.05,P0.01),GABA浓度则显著升高(P0.05,P0.01)。结论:大鼠在一次性力竭运动过程中"黑质-丘脑-皮层"通路各核团之间存在神经网络联系,该通路各核团神经递质Glu、GABA浓度的改变是导致其神经元电活动变化的因素之一。  相似文献   

5.
目的跑台急性运动疲劳动物模型的建立及评价。方法选取清洁级雄性Wistar大鼠24只(8周龄)作为实验对象。采用多级递增负荷跑台运动方案(跑台坡度为0°,负荷分为三级)建立一次性力竭跑台运动动物模型。尾静脉取血,分别测定大鼠在安静、运动30 min、运动90 min、力竭、恢复30 min、恢复90 min各时间点外周血葡萄糖(GLU)、乳酸(LD)、尿素(BU)、丙二醛(MDA)浓度和肌酸激酶(CK)、超氧化物歧化酶(SOD)活性。结果一次性力竭运动过程中大鼠行为能力和运动能力、血液代谢产物及能量物质呈现阶段性的动态变化。外周血LD、BU、MDA浓度及CK活性均较安静时显著性增高(P<0.01,P<0.05);GLU浓度、SOD活性较安静时显著降低(P<0.01,P<0.05)。各指标的变化特征说明大鼠已达到运动疲劳状态。结论建立了大鼠一次性力竭跑台运动模型,并客观动态评价了大鼠在运动疲劳产生、发展、恢复等不同阶段各指标的变化特点及规律。该模型可用于后续运动疲劳机制的相关研究。  相似文献   

6.
目的:探讨不同睡眠剥夺时间对大鼠认知功能的影响以及对下丘脑内单胺类神经递质去甲肾上腺素、多巴胺、五羟吲哚乙酸、五羟色胺的含量的影响。方法:32只健康雄性wistar大鼠随机分为4组,即96 h、120 h、144 h睡眠剥夺,正常对照组。利用睡眠剥夺箱建立大鼠SD模型,避暗穿梭法测试大鼠认知功能,高效液相电化学检测法测定下丘脑内单胺类神经递质含量。结果:大鼠避暗穿梭实验,与对照组比较,96 h、120 h组大鼠潜伏期显著缩短(P0.05);与对照组比较,各组大鼠下丘脑内NA含量均有下降(P0.05);与对照组比较,各组大鼠下丘脑内DA含量均显著下降,(P0.01),96 h、120 h、144 h组间比较,表现出含量逐渐减少的趋势;与对照组比较,各组5-HIAA含量均有上升,且120 h组明显高于其他各组(P0.05),其他组无显著性差异(P0.05);与对照组比较,各组5-HT含量均有升高,120 h、144 h组显著升高(P0.01),96 h组无显著性(P0.05)。结论:睡眠剥夺可以使大鼠中枢NA、DA含量下降,5-HIAA、5-HT含量升高,且随着睡眠剥夺时间的延长,变化更为明显,这可能是睡眠剥夺损害认知功能的原因之一。  相似文献   

7.
目的:通过美洲大蠊提取物(PAE)对力竭运动大鼠心肌自由基代谢的影响,探讨其对心肌氧化损伤的保护作用。方法:雄性SPF级健康SD大鼠40只,随机分为安静组、运动组、美洲大蠊提取物安静组、美洲大蠊提取物运动组(n=10)。服药组每天灌服2 ml美洲大蠊提取物(美洲大蠊提取物按50 mg/kg配制,溶于2 ml蒸馏水中灌胃给药),对照组每次灌蒸馏水2 ml。每天灌胃1次,连续灌胃14 d后,美洲大蠊提取物运动组与运动组大鼠进行一次性力竭游泳运动建立力竭模型,记录大鼠力竭运动时间。力竭运动结束时即刻取样,检测血清中丙二醛(MDA)含量、谷胱甘肽过氧化物酶(GSH-Px)和超氧化物歧化酶(SOD)活性,并检测观察心肌组织中一氧化氮合酶(NOS)基因的表达情况。结果:与安静组相比,一次力竭游泳后,运动组心肌SOD、GSH-Px的活性明显降低(P0.01),而MDA含量显著升高(P0.01);而美洲大蠊提取物能够显著提高力竭SD大鼠的心肌SOD、GSH-Px的活性(P0.01),降低MDA含量(P0.01),e Nos基因表达增高。结论:大鼠力竭运动后心肌会发生氧化损伤,美洲大蠊提取物干预后能够增加力竭运动后大鼠心肌的抗氧化能力,对力竭运动所致心肌损伤具有一定的保护作用,进而增强大鼠运动能力。  相似文献   

8.
目的:观察逍遥散对慢性温和不可预知应激(CUMS)模型大鼠的行为学及脑内单胺类神经递质含量的影响。方法:应用慢性温和不可预知应激程序对大鼠进行为期11周的造模,造模后3周,分别采用逍遥散(19.5g/kg、25.0g/kg)和丙咪嗪(15.0mg/kg)对模型大鼠进行为期8周的治疗。实验进程中,定期测定大鼠体重、糖水消耗量;应用开场实验测定大鼠爬行格子数和站立次数;造模、治疗结束后处死大鼠,解剖分离大鼠皮层和海马部位,采用荧光分光光度法测定5-HLAA、5-HT、DA和NE含量。结果:与正常对照组比较。大鼠造模后3周糖水消耗量、爬行格子数和站立次数均明显减少(P<0.01);与模型对照组比较,逍遥散19.5、25.0g/kg连续给药2周能显著增加糖水消耗量,但给药4周、7周对糖水消耗量影响不明显;与模型对照组比较,逍遥散25.0g/kg连续给药7周,对大鼠体重、爬行格子数和站立次数表现出提高趋势(P>0.05),逍遥散25.0g/kg连续给药8周,能明显提高模型大鼠皮层部位5-HT含量及海马部位5-HIAA含量(P<0.05,P<0.01)。结论:逍遥散对CUMS抑郁模型大鼠表现出抗抑郁作用,作用机制与影响脑内单胺类神经递质5-HT活性有关。  相似文献   

9.
反复皮下注射甲状腺素(T_4,1mg/100g·d,连续10d)和胃饲甲巯咪唑(10mg/100g·d,连续15d)后,用高效液相色谱加电化学检测器(HPLC-EGD)分析了大鼠视前区-下丘脑前部(PO/AH)中单胺神经递质的含量。发现经甲状腺素处理后,PO/AH区中多巴胺(DA)和高香草酸(HVA)含量显著增加,具有统计学意义(P<0.01),5-羟色胺(5-HT)和5-羟吲哚乙酸(5-HIAA)轻度上升,但无统计学意义(P>0.05),去甲肾上腺素(NE)无明显变化;经甲巯咪唑处理后的动物则出现NE含量显著下降(P<0.05),但DA、HVA、5-HT和5-HIAA各项变化不显著。本文还同步观察了外周血清中单胺介质含量的变化,结果表明其与中枢单胺介质含量变化基本上不同步。本文还讨论了甲状腺素和甲巯咪唑影响单胺介质含量和影响体温变化之间的关系。  相似文献   

10.
分别给予中国树鼩、Wistar 大鼠、BALB/c 小鼠低频电刺激后, 用放射免疫法检测脑组织去甲肾上腺素(noradrenaline, NA)、多巴胺(dopamine,DA)、五羟色胺(serotonin, 5-HT)水平。结果发现, 给予中国树鼩、Wistar 大鼠、BALB/c 小鼠低频电刺激后12 h、24 h、36 h, NA、DA、5-HT 水平均比对照组显著升高(均P<0.01); 电刺激后12 h, NA、DA、5-HT 升高较快的动物依次为中国树鼩>Wistar 大鼠>BALB/c 小鼠。说明不同动物对同一刺激的应激敏感程度不同。  相似文献   

11.
One-day-old rats were exposed to a gas mixture of 15% CO2-21% O2-64% N2 for a 30-min period. Monoamine synthesis in whole brain was measured during, and at various intervals after, hypercapnia by estimating the accumulation of dihydroxyphenylalanine (DOPA) and 5-hydroxytryptophan (5-HTP) after inhibition of aromatic L-amino-acid decarboxylase with NSD 1015. Endogenous concentrations of tyrosine, dopamine (DA), noradrenaline (NA), tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were measured at the same intervals. Exposure to CO2 induced an increased synthesis of catecholamines and 5-HT. Further, an increase in DA concentration was seen during hypercapnia, while NA and 5-HT were unchanged. After the CO2 exposure the increased in vivo synthesis rates of catecholamines and 5-HT were rapidly normalized, as was the endogenous DA concentration. A slight increase in 5-HT and 5-HIAA concentrations was seen immediately after CO2 exposure. These results indicate that in neonatal animals, hypercapnia induces changes in central monoamine neurons, primarily an increased synthesis. These alterations may be relevant to some physiological changes seen during CO2 exposure, such as the alteration in central respiratory performance.  相似文献   

12.
Rat brain monoamine and serotonin S2 receptor changes during pregnancy   总被引:1,自引:0,他引:1  
The concentrations of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and their metabolites were determined in 5 brain areas of non-pregnant, 15 and 20 day pregnant and 4 day post-partum rats. Striatal 5-HT content was significantly lower in 15 and 20 day pregnant rats than in estrous controls. A significant decrease in striatal and frontal cortex 5-hydroxyindole-3-acetic acid (5-HIAA) concentration was observed in 15 day pregnant rats. Significant increases in hypothalamic and hippocampal NA levels were observed at 4 days post-partum. Frontal cortex serotonin S2 receptorKd was reduced in 4 day post-partum rats. There was no significant change in S2 receptorB max during pregnancy. Levels of progesterone were negatively correlated with striatal DA, homovanillic acid (HVA), 5-HT, and 5-HIAA levels, hypothalamic DA, hippocampal 5-HT, and frontal cortex 5-HIAA values as well as striatal HVA to DA, and HVA to 3,4-dihydroxyphenylacetic acid (DOPAC) ratios and amygdaloid HVA to DOPAC ratios. The limbic neurotransmitter changes might possibly contribute to mood changes which occur during pregnancy and post-partum.  相似文献   

13.
Spontaneously hypertensive rats (SHR) were administered either 2.4 g/kg ethanol or an isocaloric glucose daily for 4 weeks and the levels of norepinephrine (NE), epinephrine (EP), dopamine (DA), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in different brain regions were determined. Results indicated a 3-fold increase in NE level in brain stem and hypothalamus and more than 2-fold increase in DA in corpus striatum in alcohol-treated rats as compared to controls. There was a significant increase in the level of DA in the corpus striatum but the levels in cerebral cortex, brain stem and hippocampus were decreased instead. Decreases in 5-HT levels were found in hypothalamus, brain stem, cortex and cerebellum of alcohol-treated brain as compared to untreated controls. These results indicate alterations of the biogenic amine contents in different regions of the SHR brain after chronic ethanol ingestion. Since stimulated release of biogenic amines in the SHR brain has been implicated in the regulation of blood pressure, changes due to ethanol ingestion may be a risk factor in hypertensive patients.  相似文献   

14.
We determined levels of monoamines and their metabolites in 2 hypothalami dissected from the right and left hemibrains of 15 females during the right-left alternating ovulatory cycle of Anolis carolinensis. Tissue contents of the following were measured using HPLC and electrochemical (coulometric) detection: dopamine (DA) and its metabolite 2,4-dihydroxyphenylacetic acid (DOPAC), norepinephrine (NE) and its metabolites 3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxyphenylglycol (DHPG), and serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). An asymmetry ratio (AR) was determined by subtracting hypothalamic content (pM/mg) on the larger ovary (LO) side from that on the smaller ovary (SO) side, divided by the sum of the 2 sides (AR = SO - LO/SO+LO). The Ar of MHPG and DHPG both decreased as the largest follicle in the LO grew during the cycle, from greater than 0 (content higher on the SO side) at the beginning of the cycle to less than 0 (content higher on the LO side). The average content of MHPG in the 2 sides significantly increased during the cycle. There were no significant asymmetric changes in hypothalamic DA or DOPAC. The average content of DA increased during the cycle, whereas the content of DOPAC, as well as DOPAC/DA, did not change. The average content of 5-HT increased, and the average metabolite ratio of 5-HIAA/5-HT decreased during the cycle without significant asymmetries. The metabolite ratios of NE and DA, but not 5-HT, were asymmetric on the same side in a given female.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In order to determine whether L-DOPA-derived extracellular dopamine (DA) in the striatum with dopaminergic denervation is affected by activation of serotonin autoreceptors (5-HT(1A) and 5-HT(1B) receptors), we applied in vivo brain microdialysis technique to 6-hydroxydopamine-lesioned rats and examined the effects of the selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and the selective 5-HT(1B) receptor agonist CGS-12066 A on L-DOPA-derived extracellular DA levels. Single L-DOPA injection (50 mg/kg i.p.) caused a rapid increase and a following decrease of extracellular DA, with a peak value at 100 min after L-DOPA injection. Pretreatment with both 0.3 mg/kg and 1 mg/kg 8-OH-DPAT (i.p.) significantly attenuated an increase in L-DOPA-derived extracellular DA and the times of peak DA levels were prolonged to 150 min and 225 min after L-DOPA injection, respectively. These 8-OH-DPAT-induced changes in L-DOPA-derived extracellular DA were antagonized by further pretreatment with WAY-100635, a selective 5-HT(1A) antagonist. In contrast, intrastriatal perfusion with the 5-HT(1B) agonist CGS-12066 A (10 nM and 100 nM) did not induce any changes in L-DOPA-derived extracellular DA. Thus, stimulation of 5-HT(1A) but not 5-HT(1B) receptors attenuated an increase in extracellular DA derived from exogenous L-DOPA. These results support the hypothesis that serotonergic neurons are primarily responsible for the storage and release of DA derived from exogenous L-DOPA in the absence of dopaminergic neurons.  相似文献   

16.
Measurements of serotonin (5-HT), dopamine (DA), and noradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16 brain regions and the spinal cord of 5-HT(1A) or 5-HT(1B) knockout and wild-type mice of the 129/Sv strain. In 5-HT(1A) knockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HT metabolites were higher than those of the wild type in dorsal/medial raphe nuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was taken as an indication of increased 5-HT turnover, reflecting an augmented basal activity of midbrain raphe neurons and consequent increase in their somatodendritic and axon terminal release of 5-HT. It provided a likely explanation for the increased anxious-like behavior observed in 5-HT(1A) knockout mice. Concomitant increases in DA content and/or DA turnover were interpreted as the result of a disinhibition of DA, whereas increases in noradrenaline concentration in some territories of projection of the locus coeruleus could reflect a diminished activity of its neurons. In 5-HT(1B) knockouts, 5-HT concentrations were lower than those of the wild type in nucleus accumbens, locus coeruleus, spinal cord, and probably also several other territories of 5-HT innervation. A decrease in DA, associated with increased DA turnover, was measured in nucleus accumbens. These changes in 5-HT and DA metabolism were consistent with the increased aggressiveness and the supersensitivity to cocaine reported in 5-HT(1B) knockout mice. Thus, markedly different alterations in CNS monoamine metabolism may contribute to the opposite behavioral phenotypes of these two knockouts.  相似文献   

17.
Abstract: This study examined the hypothesis that chronic ethanol consumption results in significant abnormalities in both the dopaminergic and the serotonergic system of aged rats. Levels of dopamine (DA), serotonin [5-hydroxytryptamine (5-HT)], 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindole-3-acetic acid (5-HIAA) were determined in brain areas of both the nigrostriatal and mesocorticolimbic DA systems in 5-, 14-, and 24-month-old male Fischer 344 rats. Aging was associated with a reduced concentration of DA in the striatum (ST), ventral tegmental area (VTA), and ventral pallidum (VP) and an increased concentration of 5-HIAA in the ST, globus pallidus, nucleus accumbens, frontal cortex, and VP. In addition, there was an increase in the 5-HIAA/5-HT ratio in all brain areas analyzed. Six weeks of ethanol consumption was accompanied by significant changes in mesocorticolimbic brain areas. In the VTA of 5-month-old ethanol-fed rats DA content was decreased to the levels found in aged rats, e.g., 24 months of age. Ethanol also significantly lowered 5-HT and 5-HIAA contents in the VTA and reduced DOPAC and 5-HIAA levels in the VP. In addition, ethanol blunted the normal age-related increase in 5-HIAA/5-HT ratio in the VTA, VP, and substantia nigra. It is interesting that although the age-related changes were found in both nigrostriatal and mesocorticolimbic brain areas, the ethanol-associated effects were found only in brain areas of the mesocorticolimbic system. The changes in DA and 5-HT function that accompany aging and ethanol consumption may contribute to the problems in motor function and ethanol abuse found in the aged.  相似文献   

18.
Abstract: The effect of (±)-8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT), a selective serotonin 5-HT1A agonist, on levels of extracellular norepinephrine (NE), dopamine (DA), and 5-HT (measured simultaneously) was investigated by microdialysis in the ventral tegmental area (VTA) of freely moving rats, and their behavioral activity was monitored. At 50 µg/kg s.c., 8-OH-DPAT reduced 5-HT levels but enhanced NE and DA levels in VTA dialysate. These effects were not altered by pretreatment with systemic idazoxan (5 mg/kg i.p.), a selective α2 antagonist, or local sulpiride (10 µ M ), a selective D2/D3 antagonist. At 500 µg/kg s.c., 8-OH-DPAT further enhanced or more persistently reduced dialysate NE or 5-HT content but had little effect on dialysate DA content. Its DA level-increasing effect could be seen dramatically with local infusion of cocaine (30 µ M ) and, to a lesser extent, sulpiride (10 µ M ). Depletion of endogenous 5-HT with p -chlorophenylalanine attenuated both the 5-HT level-reducing and DA level-enhancing effects of 8-OH-DPAT without affecting its maximal NE effect and the locomotor-stimulatory effect. Partial depletion of endogenous NE with N -(2-chloroethyl)- N -ethyl-2-bromobenzylamine failed to change the monoamine response but diminished the locomotion induced by 8-OH-DPAT. These results suggested that (a) the low dose of 8-OH-DPAT may act at presynaptic 5-HT1A receptors to modulate 5-HT and DA release, while acting at postsynaptic 5-HT1A receptors to modulate NE release; (b) the high dose of 8-OH-DPAT may activate D2 receptors to offset its DA level-increasing effect; and (c) the locomotor-stimulatory effect of 8-OH-DPAT might be mediated primarily by postsynaptic 5-HT1A receptors and the NE system.  相似文献   

19.
The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN) neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting exercise. Dopamine (DA) and 5-hydroxytryptamine (5-HT) levels were subsequently detected with high-performance liquid chromatography (HPLC). For immunohistochemistry study, the expression of DRD2 and HT2C receptors in the STN, before, immediately after and 90 min after exhaustion was detected through immunohistochemistry technique. Microdialysis study results showed that the extracellular DA and 5-HT neurotransmitters increased significantly throughout the procedure of exhausting exercise and the recovery period (P<0.05 or P<0.01). Immunohistochemistry study results showed that the expression levels of DRD2 and HT2C in the rat STN immediately after exhausting exercise and at the time point of 90 min after exhaustion were both higher than those of the rest condition, but the difference was not significant (P>0.05). Our results suggest that the increased extracellular DA and 5-HT in the STN might be one important factor leading to the enhanced STN neural activity and the development of fatigue during exhausting exercise. This study may essentially offer useful evidence for better understanding of the mechanism of the central type of exercise-induced fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号