首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Key message

A novel rice constitutive promoter (P OsCon1 ) was isolated. The molecular mechanism of the promoter activity was investigated. P OsCon1 could be used as an alternative constitutive promoter for crop transgenic engineering.

Abstract

Monocot constitutive promoter is an important resource for crop transgenic engineering. In this report, we isolated a novel promoter, Oscon1 promoter (P OsCon1 ), from the 5′ upstream region of a constitutively expressed rice gene OsDHAR1. In P OsCon1 ::GUS transgenic rice, we showed that P OsCon1 had a broad expression spectrum in all tested tissues. The expression of the promoter was further analyzed in comparison with the previously characterized strong constitutive promoters. P OsCon1 exhibited comparable activity to OsCc1, OsAct1 or ZmUbi promoters in most tissues, and more active than 35S promoter in roots, seeds, and calli. Further quantitative assays indicated that P OsCon1 activity was not affected by developmental stages or by environmental factors. Further, 5′-deletions analysis indicated that the distinct regions might contribute to the strong expression of P OsCon1 in different tissues. Overall, our results suggest that P OsCon1 is a novel constitutive promoter, which could potentially use in transgenic crop development.  相似文献   

3.
4.

Key message

Diploid strawberry and potato transformed with a transposon tagging construct exhibited either global (strawberry) or local transposition (potato). An activation tagged, compact-sized strawberry mutant overexpressed the gene adjacent to Ds.

Abstract

As major fruit and vegetable crops, respectively, strawberry and potato are among the first horticultural crops with draft genome sequences. To study gene function, we examined transposon-tagged mutant strategies in model populations for both species, Fragaria vesca and Solanum tuberosum Group Phureja, using the same Activation/Dissociation (Ac/Ds) construct. Early somatic transposition during tissue culture occurred at a frequency of 18.5 % in strawberry but not in potato transformants. Green fluorescent protein under a monocot promoter was a more reliable selectable marker in strawberry compared to potato. BASTA (gluphosinate herbicide) resistance served as an effective selectable marker for both species (80 and 85 % reliable in strawberry and potato, respectively), although the effective concentration differed (0.5 % for strawberry and 0.03 % for potato). Transposons preferentially reinserted within genes (exons and introns) in both species. Real-time quantitative PCR revealed enhanced gene expression (670 and 298-fold expression compared to wild type in petiole and leaf tissue, respectively) for an activation tagged strawberry mutant with Ds inserted about 0.6 kb upstream from a gene coding for an epidermis-specific secreted glycoprotein EP1. Our data also suggested that endopolyploid (diploid) cells occurring in leaf explants of monoploid potato were the favored targets of T-DNA integration during transformation. Mutants obtained in these studies provide a useful resource for future genetic studies.  相似文献   

5.
DNA Bending by AraC: a Negative Mutant   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

6.
7.

Key message

The gene coding for F5H from Eucalyptus globulus was cloned and used to transform an f5h -mutant of Arabidopsis thaliana , which was complemented, thus verifying the identity of the cloned gene.

Abstract

Coniferaldehyde 5-hydroxylase (F5H; EC 1.14.13) is a cytochrome P450-dependent monooxygenase that catalyzes the 5-hydroxylation step required for the production of syringyl units in lignin biosynthesis. The Eucalyptus globulus enzyme was characterized in vitro, and results showed that the preferred substrates were coniferaldehyde and coniferyl alcohol. Complementation experiments demonstrated that both cDNA and genomic constructs derived from F5H from E. globulus under the control of the cinnamate 4-hydroxylase promoter from Arabidopsis thaliana, or a partial F5H promoter from E. globulus, can rescue the inability of the A. thaliana fah1-2 mutant to accumulate sinapate esters and syringyl lignin. E. globulus is a species widely used to obtain products that require lignin removal, and the results suggest that EglF5H is a good candidate for engineering efforts aimed at increasing the lignin syringyl unit content, either for kraft pulping or biofuel production.  相似文献   

8.

Background

The ability to respond rapidly to fluctuations in environmental changes is decisive for cell survival. Under these conditions trehalose has an essential protective function and its concentration increases in response to enhanced expression of trehalose synthase genes, TPS1, TPS2, TPS3 and TSL1. Intriguingly, the NTH1 gene, which encodes neutral trehalase, is highly expressed at the same time. We have previously shown that trehalase remains in its inactive non-phosphorylated form by the action of an endogenous inhibitor. Recently, a comprehensive two-hybrid analysis revealed a 41-kDa protein encoded by the YLR270w ORF, which interacts with NTH1p.

Results

In this work we investigate the correlation of this Trehalase Associated Protein, in trehalase activity regulation. The neutral trehalase activity in the ylr270w mutant strain was about 4-fold higher than in the control strain. After in vitro activation by PKA the ylr270w mutant total trehalase activity increased 3-fold when compared to a control strain. The expression of the NTH1 gene promoter fused to the heterologous reporter lacZ gene was evaluated. The mutant strain lacking YLR270w exhibited a 2-fold increase in the NTH1-lacZ basal expression when compared to the wild type strain.

Conclusions

These results strongly indicate a central role for Ylr270p in inhibiting trehalase activity, as well as in the regulation of its expression preventing a wasteful futile cycle of synthesis-degradation of trehalose.
  相似文献   

9.
10.

Aims

Metal chemical forms and subcellular partitioning model (SPM) in organisms can provide valuable insights into metal toxicity.

Methods

Two cultivars of lettuce (Lactuca sativa L.) were grown in Cd and Cu contaminated soils and chemical forms and subcellular distribution of Cd and Cu within the lettuce shoots were determined.

Results

Examination of the inhibition of superoxide dismutase (SOD) and catalase (CAT) activities, as well as the production of H2O2 showed that Lactuca sativa L. var. longifolia is more sensitive to metal-stress than is Lactuca sativa L. var. crispa. In L. crispa, the majority of accumulated Cd was in the pectate- and protein-integrated forms (53.7–62.9 %), while in L. longifolia, a higher proportion of the Cd was in the water soluble forms (33.0–39.2 %) and in the organelles fraction – these forms being potentially associated with toxicity. The chemically-based chemical form approach agreed closely with independent biologically-based SPM, as demonstrated by their significant linear relationships.

Conclusions

This study provides a first step towards the integration of chemical form approach and SPM into a common mechanistic framework, which is important for predicting the likelihood of toxic effects of metals in the environment of interest.  相似文献   

11.
12.

Aims

This work was conducted to examine the effects of volatile organic compounds (VOCs) from Trichoderma virens and the 4-phosphopantetheinyl transferase 1 (TvPPT1) mutant in growth promotion and induction of defense responses of Arabidopsis thaliana seedlings using a co-cultivation system in vitro.

Methods

The contribution of VOCs to plant development and immunity was assessed by comparing the effectiveness of WT and Δppt1 mutant strains of T. virens in the formation of lateral roots and protection conferred against Botrytis cinerea. VOCs released by T. virens and Δppt1 mutant were compared by gas chromatography–mass spectrometry.

Results

Plants exposed to volatiles from WT T. virens showed 2-fold increase in fresh weight when compared to axenically-grown seedlings, which correlated with increased root branching and enhanced expression of the jasmonic acid-responsive marker pLox2:uidA as well as accumulation of jasmonic acid and hydrogen peroxide. T. virens produced a series of hydrocarbon terpenes, including the sesquiterpenes β-caryophyllene, (?)-β-elemene, germacrene D, τ-cadinene, δ-cadinene, α-amorphene, and τ-selinene and the monoterpenes β-myrcene, trans-β-ocimene, and cis-β-ocimene that were absent in TvPPT1 mutant.

Conclusions

Our results indicate that T. virens VOCs elicit both development and defense programs and that PPT1 plays an important role in biosynthesis of terpenes and plant protection against B. cinerea.  相似文献   

13.
14.
15.

Background

Klebsiella pneumoniae is a leading cause of hospital-acquired urinary tract infections and pneumonia worldwide, and is responsible for many cases of pyogenic liver abscess among diabetic patients in Asia. A defining characteristic of this pathogen is the presence of a thick, exterior capsule that has been reported to play a role in biofilm formation and to protect the organism from threats such antibiotics and host immune challenge.

Findings

We constructed two knockout mutants of K. pneumoniae to investigate how perturbations to capsule biosynthesis alter the cellular phenotype. In the first mutant, we deleted the entire gene cluster responsible for biosynthesis of the extracellular polysaccharide capsule. In the second mutant, we deleted the capsule export subsystem within this cluster. We find that both knockout mutants have lower amounts of capsule but produce greater amounts of biofilm. Moreover, one of the two mutants abolishes fimbriae expression as well.

Conclusions

These results are expected to provide insight into the interaction between capsule biosynthesis, biofilm formation, and fimbriae expression in this organism.  相似文献   

16.
17.

Background and aims

Plant physiological traits and their relation to soil N availability was investigated as regulators of the distribution of understory shrub species along a slope in a Japanese cedar (Cryptomeria japonica) plantation in central Japan.

Methods

At the study site, previous studies demonstrated that both net and gross soil nitrification rates are high on the lower slope and there are dramatic declines in different sections of the slope gradient. We examined the distributions of understory plant species and their nitrate (NO 3 ? -N) use traits, and compared the results with the soil traits.

Results

Our results show that boundaries between different dominant understory species correspond to boundaries between different soil types. Leucosceptrum stellipilum occurs on soil with high net and gross nitrification rates. Hydrangea hirta is dominant on soil with high net and low gross nitrification rates. Pieris japonica occurs on soil with very low net and gross nitrification rates. Dominant understory species have species-specific physiological traits in their use of NO 3 ? -N. Pieris japonica lacks the capacity to use NO 3 ? -N as a N source, but other species do use NO 3 ? -N. Lindera triloba, whose distribution is unrelated to soil NO 3 ? -N availability, changes the extent to which it uses NO 3 ? -N in response to soil NO 3 ? -N availability.

Conclusions

Our results indicate that differences in the physiological capabilities and adaptabilities of plant species in using NO 3 ? -N as a N source regulate their distribution ranges. The identity of the major form of available soil N is therefore an environmental factor that influences plant distributions.  相似文献   

18.

Key message

For the first time the putative NSP2 gene in chickpea has been identified using pairs of NILs differing for the Rn1 / rn1 nodulation gene that was located in LG5 of chickpea genetic map.

Abstract

An intraspecific cross between the mutant non-nodulating genotype PM233, carrying the recessive gene rn1, and the wild-type CA2139 was used to develop two pairs of near-isogenic lines (NILs) for nodulation in chickpea. These pairs of NILs were characterized using sequence tagged microsatellite site (STMS) markers distributed across different linkage groups (LGs) of the chickpea genetic map leading to the detection of polymorphic markers located in LG5. Using this information, together with the genome annotation in Medicago truncatula, a candidate gene (NSP2) known to be involved in nodulation pathway was selected for mapping in chickpea. The full length sequence obtained in chickpea wild-type (CaNSP2) was 1,503 bp. Linkage analysis in an F3 population of 118 plants derived from the cross between the pair of NILS NIL7-2A (nod) × NIL7-2B (non-nod) revealed a co-localization between CaNSP2 and Rn1 gene. These data implicate the CaNSP2 gene as a candidate for identity to Rn1, and suggest that it could act in the nodulation signaling transduction pathway similarly to that in other legumes species.  相似文献   

19.

Background

Atovaquone is part of the antimalarial drug combination atovaquone-proguanil (Malarone®) and inhibits the cytochrome bc1 complex of the electron transport chain in Plasmodium spp. Molecular modelling showed that amino acid mutations are clustered around a putative atovaquone-binding site resulting in a reduced binding affinity of atovaquone for plasmodial cytochrome b, thus resulting in drug resistance.

Methods

The prevalence of cytochrome b point mutations possibly conferring atovaquone resistance in Plasmodium falciparum isolates in atovaquone treatment-naïve patient cohorts from Lambaréné, Gabon and from South Western Ethiopia was assessed.

Results

Four/40 (10%) mutant types (four different single polymorphisms, one leading to an amino acid change from M to I in a single case) in Gabonese isolates, but all 141/141 isolates were wild type in Ethiopia were found.

Conclusion

In the absence of drug pressure, spontaneous and possibly resistance-conferring mutations are rare.  相似文献   

20.

Objective

To construct a promoter probe vector, pBE-bgaB, to screen strong promoters from Bacillus amyloliquefaciens.

Results

266 colonies containing active promoter elements from the genomic DNA of B. amyloliquefaciens were identified. Among these, promoter P41 exhibited the strongest β-Gal activity in Escherichia coli and B. amyloliquefaciens. Sequence analysis showed that promoter P41 contained P ykuN , a ykuN gene encoding flavodoxin. Optimization of the ribosome-binding site from P41 to P382 improved β-Gal activity by ~ 200%.

Conclusion

A new strong promoter for protein expression and genetic engineering of Bacillus species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号