首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1969年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
Abstract The most common effect of the endosymbiont Wolbachia is cytoplasmic incompatibility (CI), a form of postzygotic reproductive isolation that occurs in crosses where the male is infected by at least one Wolbachia strain that the female lacks. We revisited two puzzling features of Wolbachia biology: how Wolbachia can invade a new species and spread among populations, and how the association, once established in a host species, can evolve, with emphasis on the possible process of infection loss. These questions are particularly relevant in haplodiploid species, where males develop from unfertilized eggs, and females from fertilized eggs. When CI occurs in such species, fertilized eggs either die (female mortality type: FM), or develop into males (male development type: MD), raising one more question: how transition among CI types is possible. We reached the following conclusions: (1) the FM type is a better invader and should be retained preferentially after a new host is captured; (2) given the assumptions of the models, FM and MD types are selected on neither the bacterial side nor the host side; (3) selective pressures acting on both partners are more or less congruent in the FM type, but divergent in the MD type; (4) host and symbiont evolution can drive infection to extinction for all CI types, but the MD type is more susceptible to the phenomenon; and (5) under realistic conditions, transition from MD to FM type is possible. Finally, all these results suggest that the FM type should be more frequent than the MD type, which is consistent with the results obtained so far in haplodiploids.  相似文献   
2.
Most cases of Wolbachia infection so far documented in haplodiploid Hymenoptera are associated with parthenogenesis induction. Only three examples of Wolbachia-mediated cytoplasmic incompatibility (CI) have been reported, resulting either in haploidisation of fertilised eggs, which develop into viable males, or in their death. To better document this variability, we studied two new Wolbachia-wasp associations involving Drosophila parasitoids. In Trichopria cf. drosophilae, individuals are infected by two different Wolbachia variants, populations are nearly totally infected, and Wolbachia induces incomplete CI resulting in death of the fertilised eggs. On the other hand, Pachycrepoideus dubius harbours only one bacterial variant, populations are polymorphic for infection, and Wolbachia has no detectable effect. These two cases show that the range of variation in Wolbachia's effects in Hymenoptera is as wide as in diploids, extending from complete CI to an undetectable effect. Cases so far studied show some parallel between the strength of incompatibility, the number of Wolbachia variants infecting each wasp, and the natural infection frequency. These empirical data support theoretical models predicting evolution of CI towards lower levels, resulting in the decline and ultimate loss of infection, and place multiple infections as being an important factor in the evolution of host-Wolbachia associations.  相似文献   
3.
Q fever is a highly infectious disease with a worldwide distribution. Its causative agent, the intracellular bacterium Coxiella burnetii, infects a variety of vertebrate species, including humans. Its evolutionary origin remains almost entirely unknown and uncertainty persists regarding the identity and lifestyle of its ancestors. A few tick species were recently found to harbor maternally-inherited Coxiella-like organisms engaged in symbiotic interactions, but their relationships to the Q fever pathogen remain unclear. Here, we extensively sampled ticks, identifying new and atypical Coxiella strains from 40 of 58 examined species, and used this data to infer the evolutionary processes leading to the emergence of C. burnetii. Phylogenetic analyses of multi-locus typing and whole-genome sequencing data revealed that Coxiella-like organisms represent an ancient and monophyletic group allied to ticks. Remarkably, all known C. burnetii strains originate within this group and are the descendants of a Coxiella-like progenitor hosted by ticks. Using both colony-reared and field-collected gravid females, we further establish the presence of highly efficient maternal transmission of these Coxiella-like organisms in four examined tick species, a pattern coherent with an endosymbiotic lifestyle. Our laboratory culture assays also showed that these Coxiella-like organisms were not amenable to culture in the vertebrate cell environment, suggesting different metabolic requirements compared to C. burnetii. Altogether, this corpus of data demonstrates that C. burnetii recently evolved from an inherited symbiont of ticks which succeeded in infecting vertebrate cells, likely by the acquisition of novel virulence factors.  相似文献   
4.
5.
6.
Bacterial symbionts are widespread in insects and other animals. Most of them are predominantly vertically transmitted, along with their hosts' genes, and thus extend the heritable genetic variation present in one species. These passengers have a variety of repercussions on the host's phenotypes: besides the cost imposed on the host for maintaining the symbiont population, they can provide fitness advantages to the host or manipulate the host's reproduction. We argue that insect symbioses are ideal model systems for community genetics. First, bacterial symbionts directly or indirectly affect the interactions with other species within a community. Examples include their involvement in modifying the use of host plants by phytophagous insects, in providing resistance to natural enemies, but also in reducing the global genetic diversity or gene flow between populations within some species. Second, one emerging picture in insect symbioses is that many species are simultaneously infected with more than one symbiont, which permits studying the factors that shape bacterial communities; for example, horizontal transmission, interactions between host genotype, symbiont genotype and the environment and interactions among symbionts. One conclusion is that insects' symbiotic complements are dynamic communities that affect and are affected by the communities in which they are embedded.  相似文献   
7.
Bacteria belonging to the genus Wolbachia are obligatory microendocytobionts that infect a variety of arthropods and a majority of filarial nematode species, where they induce reproductive alterations or establish a mutualistic symbiosis. Although two whole genome sequences of Wolbachia pipientis, for strain wMel from Drosophila melanogaster and strain wBm from Brugia malayi, have been fully completed and six other genome sequencing projects are ongoing (http://www.genomesonline.org/index.cgi?want=Prokaryotic+Ongoin), genetic analyses of these bacteria are still scarce, mainly due to the inability to cultivate them outside of eukaryotic cells. Usually, a large amount of host tissue (a thousand individuals, or about 10 g) is required in order to purify Wolbachia and extract its DNA, which is often recovered in small amounts and contaminated by host cell DNA, thus hindering genomic studies. In this report, we describe an efficient and reliable procedure to representatively amplify the Wolbachia genome by multiple-displacement amplification from limited infected host tissue (0.2 g or 2 x 10(7) cells). We obtained sufficient amounts (8 to 10 microg) of DNA of suitable quality for genomic studies, and we demonstrated that the amplified DNA contained all of the Wolbachia loci targeted. In addition, our data indicated that the genome of strain wRi, an obligatory endosymbiont of Drosophila simulans, shares a similar overall architecture with its relative strain wMel.  相似文献   
8.
Dedeine F  Boulétreau M  Vavre F 《Heredity》2005,95(5):394-400
Wolbachia are symbiotic bacteria that induce a diversity of phenotypes on their numerous invertebrate host species. In the wasp Asobara tabida (Braconidae), each individual harbours three Wolbachia strains: wAtab3, which is required for host oogenesis, and wAtab1 and wAtab2, that do not have this function but induce cytoplasmic incompatibility. In this study, we surveyed and identified Wolbachia strains in four additional Asobara species. We detected Wolbachia in one of these species, but both the identity (based on wsp gene) and prevalence of the Wolbachia detected in natural population indicate that this host species is not dependent on Wolbachia for oogenesis. We also compared A. tabida lines of different geographical origin for their dependence on Wolbachia. All individuals from 16 A. tabida lines proved to be infected by the three Wolbachia strains wAtab1, wAtab2 and wAtab3, but, interestingly, we found variation among lines in the degree to which females were dependent on Wolbachia to produce their oocytes. In three lines, aposymbiotic females (cured from the three Wolbachia strains by antibiotics) can produce some oocytes. However, these aposymbiotic females produce fewer and smaller oocytes than symbiotic ones, and the larvae they produce die before full development. Thus, depending on which nuclear genotype they have, A. tabida females depend on Wolbachia either because they fail to produce any oocyte or because the few oocytes they do produce generate unviable offspring. We discuss the implications of these findings for the understanding of the physiological and genetic deficiency of aposymbiotic females.  相似文献   
9.
Symbionts are widespread and might have a substantial effect on the outcome of interactions between species, such as in host-parasitoid systems. Here, we studied the effects of symbionts on the outcome of host-parasitoid interactions in a four-partner system, consisting of the parasitoid wasp Leptopilina boulardi, its two hosts Drosophila melanogaster and D. simulans, the wasp virus LbFV, and the endosymbiotic bacterium Wolbachia. The virus is known to manipulate the superparasitism behavior of the parasitoid whereas some Wolbachia strains can reproductively manipulate and/or confer pathogen protection to Drosophila hosts. We used two nuclear backgrounds for both Drosophila species, infected with or cured of their respective Wolbachia strains, and offered them to L. boulardi of one nuclear background, either infected or uninfected by the virus. The main defence mechanism against parasitoids, i.e. encapsulation, and other important traits of the interaction were measured. The results showed that virus-infected parasitoids are less frequently encapsulated than uninfected ones. Further experiments showed that this viral effect involved both a direct protective effect against encapsulation and an indirect effect of superparasitism. Additionally, the Wolbachia strain wAu affected the encapsulation ability of its Drosophila host but the direction of this effect was strongly dependent on the presence/absence of LbFV. Our results confirmed the importance of heritable symbionts in the outcome of antagonistic interactions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号