首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.

Main conclusion

In contrast to current knowledge, the B -ring hydroxylation pattern of anthocyanins can be determined by the hydroxylation of leucoanthocyanidins in the 3′ position by flavonoid 3’-hydroxylase.

Abstract

The cytochrome P450-dependent monooxygenases flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) are key flavonoid enzymes that introduce B-ring hydroxyl groups in positions 3′ or 3′ and 5′, respectively. The degree of B-ring hydroxylation is the major determinant of the hue of anthocyanin pigments. Numerous studies have shown that F3′H and F3′5′H may act on more than one type of anthocyanin precursor in addition to other flavonoids, but it has been unclear whether the anthocyanin precursor of the leucoanthocyanidin type can be hydroxylated as well. We have investigated this in vivo using feeding experiments and in vitro by studies with recombinant F3′H. Feeding leucoanthocyanidins to petal tissue with active hydroxylases resulted in anthocyanidins with increased B-ring hydroxylation relative to the fed leucoanthocyanidin, indicating the presence of 3′-hydroxylating activity (in Petunia and Eustoma grandiflorum Grise.) and 3′,5′-hydroxylating activity (in E. grandiflorum Grise.). Tetcyclacis, a specific inhibitor of cytochrome P450-dependent enzymes, abolished this activity, excluding involvement of unspecific hydroxylases. While some hydroxylation could be a consequence of reverse catalysis by dihydroflavonol 4-reductase (DFR) providing an alternative substrate, hydroxylating activity was still present in fed petals of a DFR deficient petunia line. In vitro conversion rates and kinetic data for dLPG (a stable leucoanthocyanidin substrate) were comparable to those for other flavonoids for nine of ten recombinant flavonoid hydroxylases from various taxa. dLPG was a poor substrate for only the recombinant Fragaria F3′Hs. Thus, the B-ring hydroxylation pattern of anthocyanins can be determined at all precursor levels in the pathway.  相似文献   

3.

Background

Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G) and syringyl (S) subunits, we compared the degradability of cell wall material from wild-type Arabidopsis thaliana with a mutant line and a genetically modified line, the lignins of which are enriched in G and S subunits, respectively.

Results

Arabidopsis tissue containing G- and S-rich lignins had the same saccharification performance as the wild type when subjected to enzyme hydrolysis without pretreatment. After a 24-hour incubation period, less than 30% of the total glucan was hydrolyzed. By contrast, when liquid hot water (LHW) pretreatment was included before enzyme hydrolysis, the S-lignin-rich tissue gave a much higher glucose yield than either the wild-type or G-lignin-rich tissue. Applying a hot-water washing step after the pretreatment did not lead to a further increase in final glucose yield, but the initial hydrolytic rate was doubled.

Conclusions

Our analyses using the model plant A. thaliana revealed that lignin composition affects the enzymatic digestibility of LHW pretreated plant material. Pretreatment is more effective in enhancing the saccharification of A. thaliana cell walls that contain S-rich lignin. Increasing lignin S monomer content through genetic engineering may be a promising approach to increase the efficiency and reduce the cost of biomass to biofuel conversion.  相似文献   

4.

Key message

The blueberry FLOWERING LOCUS T ( FT )-like gene ( VcFT ) cloned from the cDNA of a tetraploid, northern highbush blueberry ( Vaccinium corymbosum L.) is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering.

Abstract

Blueberry is a woody perennial bush with a longer juvenile period than annual crops, requiring vernalization to flower normally. Few studies have been reported on the molecular mechanism of flowering in blueberry or other woody plants. Because FLOWERING LOCUS T (FT) from Arabidopsis thaliana plays a multifaceted role in generating mobile molecular signals to regulate plant flowering time, isolation and functional analysis of the blueberry (Vaccinium corymbosum L.) FT-like gene (VcFT) will facilitate the elucidation of molecular mechanisms of flowering in woody plants. Based on EST sequences, a 525-bpVcFT was identified and cloned from the cDNA of a tetraploid, northern highbush blueberry cultivar, Bluecrop. Ectopic expression of 35S:VcFT in tobacco induced flowering an average of 28 days earlier than wild-type plants. Expression of the 35S:VcFT in the blueberry cultivar Aurora resulted in an extremely early flowering phenotype, which flowered not only during in vitro culture, a growth stage when nontransgenic shoots had not yet flowered, but also in 6–10-week old, soil-grown transgenic plants, in contrast to the fact that at least 1 year and 800 chilling hours are required for the appearance of the first flower of both nontransgenic ‘Aurora’ and transgenic controls with the gusA. These results demonstrate that the VcFT is a functional floral activator and overexpression of the VcFT is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering.  相似文献   

5.
6.
7.
8.
Poplar (Populus tremula × alba) lignins with exceedingly high syringyl monomer levels are produced by overexpression of the ferulate 5-hydroxylase (F5H) gene driven by a cinnamate 4-hydroxylase (C4H) promoter. Compositional data derived from both standard degradative methods and NMR analyses of the entire lignin component (as well as isolated lignin fraction) indicated that the C4H∷F5H transgenic''s lignin was comprised of as much as 97.5% syringyl units (derived from sinapyl alcohol), the remainder being guaiacyl units (derived from coniferyl alcohol); the syringyl level in the wild-type control was 68%. The resultant transgenic lignins are more linear and display a lower degree of polymerization. Although the crucial β-ether content is similar, the distribution of other interunit linkages in the lignin polymer is markedly different, with higher resinol (β-β) and spirodienone (β-1) contents, but with virtually no phenylcoumarans (β-5, which can only be formed from guaiacyl units). p-Hydroxybenzoates, acylating the γ-positions of lignin side chains, were reduced by >50%, suggesting consequent impacts on related pathways. A model depicting the putative structure of the transgenic lignin resulting from the overexpression of F5H is presented. The altered structural features in the transgenic lignin polymer, as revealed here, support the contention that there are significant opportunities to improve biomass utilization by exploiting the malleability of plant lignification processes.In the continuing search for improved biomass utilization in processes including chemical pulping, natural ruminant digestibility, and biomass conversion to ethanol, considerable attention has focused on improving lignocellulosic feedstocks through genetic engineering. Perturbing plant biomass deposition by misregulating key genes/enzymes integral to major cell wall pathways can provide rich insights into cell wall development and architecture and also create significant opportunities for improved lignocellulosic utilization (Baucher et al., 2003; Boerjan et al., 2003; Ralph et al., 2004). Lignins comprise the second most abundant polymer class in the biosphere; however, their combinatorial biosynthesis renders them among the more complex biomacromolecules synthesized by plants. Alterations in plant cell wall chemistry or ultrastructure, including lignin content or structure, can have a profound effect on chemical or enzymatic degradability. For example, in chemical pulping, lignin structure and content have been shown to significantly impact delignification efficiency (both pulp yield and residual lignin [RL] content) and pulp bleachability (Chang and Sarkanen, 1973; Huntley et al., 2003; Stewart et al., 2006). Similarly, improvements in fermentable sugar yields have been reported in lignin-engineered Medicago sativa (Chen and Dixon, 2007).In recent years, the genes encoding enzymes specific to the lignin branch of the phenylpropanoid pathway have been cloned and their roles evaluated using a combination of forward and reverse genetics (Franke et al., 2002; Baucher et al., 2003; Boerjan et al., 2003). The down-regulation of genes early in the pathway may limit the overall flux of metabolites to lignin synthesis. In contrast, the genes common to the latter part of the pathway generally affect the distribution of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin units resulting from the primary monomers (the three monolignols p-coumaryl, coniferyl, and sinapyl alcohols). And, in several cases when the biosynthesis of a normal monolignol is severely curtailed, lignins appear to incorporate unique phenolics (e.g. 5-hydroxyconiferyl alcohol, hydroxycinnamaldehydes, and ferulic acid) that have not traditionally been considered lignin monomers (Sederoff et al., 1999; Boerjan et al., 2003; Ralph et al., 2004, 2008a, 2008b).Ferulate 5-hydroxylase (F5H), also referred to coniferaldehyde 5-hydroxylase to reflect one of its preferred substrate (Humphreys et al., 1999; Osakabe et al., 1999), is a key enzyme involved in synthesizing the monolignol sinapyl alcohol and, ultimately, S lignin moieties. F5H therefore affects the partitioning between the two major traditional monolignols, coniferyl and sinapyl alcohols, and is fundamental to the evolutionary differences between gymnosperms (with no S components) and angiosperms (with compositions favoring the S monomers). For example, the fah1 Arabidopsis (Arabidopsis thaliana) mutant, deficient in F5H, has little to no S lignin (Meyer et al., 1998; Marita et al., 1999). Like gymnosperms, it produces G-rich lignins, derived almost exclusively from coniferyl alcohol. In contrast, the overexpression of F5H in the mutant background produces plants displaying substantially higher than normal sinapyl alcohol-derived S units and is consequentially severely depleted in coniferyl alcohol-derived G units. Wet chemical analyses of cell wall lignins estimated S contents of up to about 92% in F5H-up-regulated Arabidopsis (Meyer et al., 1998), up to 84% in tobacco (Nicotiana tabacum; Franke et al. 2000), and as high as 93.5% in hybrid poplar (Populus tremula × Populus alba; Huntley et al., 2003; Li et al., 2003). These engineered cell walls, rich in S units, exceed the highest reported in nature to date (Baucher et al., 1998), with kenaf (Hibiscus cannabinus) bast fiber lignin, at 85% S, being among the highest (Ralph, 1996; Morrison et al., 1999). In poplars, the final methylation step, catalyzed by caffeic acid 3-O-methyl transferase (COMT), appears to adequately accommodate the increased flux from coniferaldehyde to 5-hydroxyconiferaldehyde to produce sinapaldehyde and ultimately sinapyl alcohol (Li et al., 2000, 2003). In Arabidopsis, however, evidence suggests that the COMT is not able to keep pace with the increased 5-hydroxyconiferaldehyde generated by F5H overexpression, since the ensuing lignins comprise a significant component derived from 5-hydroxyconiferyl alcohol (Ralph et al., 2001a). Novel 5-hydroxyguaiacyl benzodioxane structures, which result from incorporation of 5-hydroxyconiferyl alcohol into the lignification scheme, were the same as those noted in COMT-deficient plants (Ralph et al., 2001a, 2001b; Marita et al., 2001, 2003).The availability of woody plant material possessing an extreme S lignin concentration affords unique opportunities to explore the mechanisms and consequences of pushing plants toward compositional limits and has both major fundamental and industrial consequences. Engineering lignin composition to extreme levels provides rare and novel insights into the ramifications on the structure of the lignin component and on other cell wall characteristics. Here, we investigate the nature of the chemical modifications to the lignin polymer in up-regulated cinnamate 4-hydroxylase (C4H)∷F5H poplar and propose a model for how such gene perturbation impacts lignin biosynthesis.  相似文献   

9.

Key message

The core promoter of the antiquitin ALDH7B4 gene was compared between selected Brassicaceae. Conserved cis elements controlling osmotic stress and wound-induced expression were identified and analysed in Arabidopsis thaliana leaves and seeds.

Abstract

Aldehyde dehydrogenases metabolise a wide range of aliphatic and aromatic aldehydes, which become cytotoxic at high levels. Family 7 aldehyde dehydrogenase genes, often described as antiquitins or turgor-responsive genes in plants, are broadly conserved across all domains. Despite the high conservation of the plant ALDH7 proteins and their importance in stress responses, their regulation has not been investigated. Here, we compared ALDH7 genes of different Brassicaceae and found that, in contrast to the gene organisation and protein coding sequences, similarities in the promoter sequences were limited to the first few hundred nucleotides upstream of the translation start codon. The function of this region was studied by isolating the core promoter of the Arabidopsis thaliana ALDH7B4 gene, taken as model. The promoter was found to be responsive to wounding in addition to salt and dehydration stress. Cis-acting elements involved in stress responsiveness were analysed and two conserved ACGT-containing motifs proximal to the translation start codon were found to be essential for the responsiveness to osmotic stress in leaves and in seeds. The integrity of an upstream ACGT motif and a dehydration-responsive element/C-repeat—low temperature-responsive element was found to be necessary for ALDH7B4 expression in seeds and induction by salt, dehydration and ABA in leaves. The comparison of the gene expression in selected Arabidopsis mutants demonstrated that osmotic stress-induced ALDH7B4 expression in leaves and seeds involves both ABA- and lipid-signalling components.  相似文献   

10.
11.
John C. Semple 《Brittonia》1987,39(3):379-386
The following new names and combinations are proposed:Heterotheca barbata (Rydb.) Semple,H. horrida subsp.cinerascens (S. F. Blake) Semple,H. fulcrata vararizonica Semple,H. fulcrata var.senilis (Wooton & Standley) Semple,H. oregona var.compacta (Keck) Semple,H. oregona var.rudis (Greene) Semple,H. oregona var.scaberrima (A. Gray) Semple,H. pumila (Greene) Semple,H. villosa var.pedunculata (Greene) V. Harms ex Semple, andH. zionensis Semple. The following chromosome numbers are reported for the first time:H. fulcrata var.arizonica, 2n=9 II ;H. horrida subsp.cinerascens, 2n=18 II ;H. pumila, 2n=9 II ,2n=18 II ;H. zionensis, 2n=9 II .  相似文献   

12.

Key message

MdCRY2 was isolated from apple fruit skin, and its function was analyzed in MdCRY2 transgenic Arabidopsis. The interaction between MdCRY2 and AtCOP1 was found by yeast two-hybrid and BiFC assays.

Abstract

Cryptochromes are blue/ultraviolet-A (UV-A) light receptors involved in regulating various aspects of plant growth and development. Investigations of the structure and functions of cryptochromes in plants have largely focused on Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), pea (Pisum sativum), and rice (Oryza sativa). However, no data on the function of CRY2 are available in woody plants. In this study, we isolated a cryptochrome gene, MdCRY2, from apple (Malus domestica). The deduced amino acid sequences of MdCRY2 contain the conserved N-terminal photolyase-related domain and the flavin adenine dinucleotide (FAD) binding domain, as well as the C-terminal DQXVP-acidic-STAES (DAS) domain. Relationship analysis indicates that MdCRY2 shows the highest similarity to the strawberry FvCRY protein. The expression of MdCRY2 is induced by blue/UV-A light, which represents a 48-h circadian rhythm. To investigate the function of MdCRY2, we overexpressed the MdCRY2 gene in a cry2 mutant and wild type (WT) Arabidopsis, assessed the phenotypes of the resulting transgenic plants, and found that MdCRY2 functions to regulate hypocotyl elongation, root growth, flower initiation, and anthocyanin accumulation. Furthermore, we examined the interaction between MdCRY2 and AtCOP1 using a yeast two-hybrid assay and a bimolecular fluorescence complementation assay. These data provide functional evidence for a role of blue/UV-A light-induced MdCRY2 in controlling photomorphogenesis in apple.  相似文献   

13.

Key message

Atkin - 1 , the only Kinesin-1 member of Arabidopsis thaliana , plays a role during female gametogenesis through regulation of nuclear division cycles.

Abstract

Kinesins are microtubule-dependent motor proteins found in eukaryotic organisms. They constitute a superfamily that can be further classified into at least 14 families. In the Kinesin-1 family, members from animal and fungi play roles in long-distance transport of organelles and vesicles. Although Kinesin-1-like sequences have been identified in higher plants, little is known about their function in plant cells, other than in a recently identified Kinesin-1-like protein in a rice pollen semi-sterile mutant. In this study, the gene encoding the only Kinesin-1 member in Arabidopsis, AtKin-1 was found to be specifically expressed in ovules and anthers. AtKin-1 loss-of-function mutants showed substantially aborted ovules in siliques, and this finding was supported by complementation testing. Reciprocal crossing between mutant and wild-type plants indicated that a defect in AtKin-1 results in partially aborted megagametophytes, with no observable effects on pollen fertility. Further observation of ovule development in the mutant pistils indicated that the enlargement of the megaspore was blocked and nuclear division arrested at the one-nucleate stage during embryo sac formation. Our data suggest that AtKin-1 plays a role in the nuclear division cycles during megagametogenesis.  相似文献   

14.

Key message

HMGS functions in phytosterol biosynthesis, development and stress responses. F-244 could specifically-inhibit HMGS in tobacco BY-2 cells and Brassica seedlings. An update on HMGS from higher plants is presented.

Abstract

3-Hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS) is the second enzyme in the mevalonate pathway of isoprenoid biosynthesis and catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to produce S-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Besides HMG-CoA reductase (HMGR), HMGS is another key enzyme in the regulation of cholesterol and ketone bodies in mammals. In plants, it plays an important role in phytosterol biosynthesis. Here, we summarize the past investigations on eukaryotic HMGS with particular focus on plant HMGS, its enzymatic properties, gene expression, protein structure, and its current status of research in China. An update of the findings on HMGS from animals (human, rat, avian) to plants (Brassica juncea, Hevea brasiliensis, Arabidopsis thaliana) will be discussed. Current studies on HMGS have been vastly promoted by developments in biochemistry and molecular biology. Nonetheless, several limitations have been encountered, thus some novel advances in HMGS-related research that have recently emerged will be touched on.  相似文献   

15.

Main conclusion

Comprehensive subcellular localization analysis revealed that the subcellular distribution of carbohydrate metabolic pathways in the red alga Cyanidioschyzon is essentially identical with that in Arabidopsis , except the lack of transaldolase. In plants, the glycolysis and oxidative pentose phosphate pathways (oxPPP) are located in both cytosol and plastids. However, in algae, particularly red algae, the subcellular localization of enzymes involved in carbon metabolism is unclear. Here, we identified and examined the localization of enzymes related to glycolysis, oxPPP, and tricarboxylic acid (TCA) and Calvin–Benson cycles in the red alga Cyanidioschyzon merolae. A gene encoding transaldolase of the oxPPP was not found in the C. merolae genome, and no transaldolase activity was detected in cellular extracts. The subcellular localization of 65 carbon metabolic enzymes tagged with green fluorescent protein or hemagglutinin was examined in C. merolae cells. As expected, TCA and Calvin–Benson cycle enzymes were localized to mitochondria and plastids, respectively. The analyses also revealed that the cytosol contains the entire glycolytic pathway and partial oxPPP, whereas the plastid contains a partial glycolytic pathway and complete oxPPP, with the exception of transaldolase. Together, these results suggest that the subcellular distribution of carbohydrate metabolic pathways in C. merolae is essentially identical with that reported in the photosynthetic tissue of Arabidopsis thaliana; however, it appears that substrates typically utilized by transaldolase are consumed by glycolytic enzymes in the plastidic oxPPP of C. merolae.  相似文献   

16.

Key message

The E8 promoter–HSP terminator expression cassette is a powerful tool for increasing the accumulation of recombinant protein in a ripening tomato fruit.

Abstract

Strong, tissue-specific transgene expression is a desirable feature in transgenic plants to allow the production of variable recombinant proteins. The expression vector is a key tool to control the expression level and site of transgene and recombinant protein expression in transgenic plants. The combination of the E8 promoter, a fruit-ripening specific promoter, and a heat shock protein (HSP) terminator, derived from heat shock protein 18.2 of Arabidopsis thaliana, produces the strong and fruit-specific accumulation of recombinant miraculin in transgenic tomato. Miraculin gene expression was driven by an E8 promoter and HSP terminator cassette (E8–MIR–HSP) in transgenic tomato plants, and the miraculin concentration was the highest in the ripening fruits, representing 30–630 μg miraculin of the gram fresh weight. The highest level of miraculin concentration among the transgenic tomato plant lines containing the E8–MIR–HSP cassette was approximately four times higher than those observed in a previous study using a constitutive 35S promoter and NOS terminator cassette (Hiwasa-Tanase et al. in Plant Cell Rep 30:113–124, 2011). These results demonstrate that the combination of the E8 promoter and HSP terminator cassette is a useful tool to increase markedly the accumulation of recombinant proteins in a ripening fruit-specific manner.  相似文献   

17.
18.
Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to change lignin composition is downregulation or overexpression of ferulate 5-hydroxylase (F5H), which results in lignins enriched in guaiacyl or syringyl units, respectively. Here, we combined these approaches to generate plants enriched in coniferaldehyde-derived lignin units or lignins derived primarily from sinapaldehyde. The cadc cadd and ferulic acid hydroxylase1 (fah1) cadc cadd plants are similar in growth to wild-type plants even though their lignin compositions are drastically altered. In contrast, disruption of CAD in the F5H-overexpressing background results in dwarfism. The dwarfed phenotype observed in these plants does not appear to be related to collapsed xylem, a hallmark of many other lignin-deficient dwarf mutants. cadc cadd, fah1 cadc cadd, and cadd F5H-overexpressing plants have increased enzyme-catalyzed cell wall digestibility. Given that these CAD-deficient plants have similar total lignin contents and only differ in the amounts of hydroxycinnamaldehyde monomer incorporation, these results suggest that hydroxycinnamaldehyde content is a more important determinant of digestibility than lignin content.  相似文献   

19.

Key message

Reduced levels of profilin 3 do not have a noticeable phenotypic effect; however, elevated profilin 3 levels result in decreased hypocotyl length due to a reduction in cell elongation and F-actin reorganization.

Abstract

The actin cytoskeleton is critical for a variety of cellular processes. The small actin monomer proteins, profilins (PRFs), are encoded by five highly conserved isoforms in Arabidopsis thaliana. PRF3, one of the vegetative isoforms, has 36 more N-terminal amino acid residues than the other four PRFs; however, the functions of PRF3 are mostly unknown. In this study, we demonstrated that PRF3 was strongly expressed in young seedlings, rosette leaves, and cauline leaves, but was weakly expressed in 14-day-old seedlings and flowers. Our data also showed that PRF3 could increase the critical concentration (Cc) of actin assembly in vitro. Overexpression of the full-length PRF3 cDNA resulted in a decrease in the lengths of roots and hypocotyls and delayed seed germination, but PRF3-ΔN36 transgenic plants and prf3 mutant plants showed normal growth when compared with wild-type plants. Microscopy observation revealed that cell elongation was inhibited in the hypocotyl and that F-actin was reorganized by destabilizing microfilaments. These results suggest that the dwarf phenotype of the PRF3 overexpression seedlings may be related to a reduction in cell length and F-actin rearrangement.  相似文献   

20.

Key message

This study demonstrates for the first time that resistance to different root lesion nematodes ( P. neglectus and P. penetrans ) is controlled by a common QTL. A major resistance QTL ( Rlnnp6H ) has been mapped to chromosome 6H using two independent barley populations.

Abstract

Root lesion nematodes (Pratylenchus spp.) are important pests in cereal production worldwide. We selected two doubled haploid populations of barley (Igri × Franka and Uschi × HHOR 3073) and infected them with Pratylenchus penetrans and Pratylenchus neglectus. Nematode multiplication rates were measured 7 or 10 weeks after infection. In both populations, continuous phenotypic variations for nematode multiplication rates were detected indicating a quantitative inheritance of resistance. In the Igri × Franka population, four P. penetrans resistance QTLs were mapped with 857 molecular markers on four linkage groups (2H, 5H, 6H and 7H). In the Uschi × HHOR 3073 population, eleven resistance QTLs (P. penetrans and P. neglectus) were mapped with 646 molecular markers on linkage groups 1H, 3H, 4H, 5H, 6H and 7H. A major resistance QTL named Rlnnp6H (LOD score 6.42–11.19) with a large phenotypic effect (27.5–36.6 %) for both pests was mapped in both populations to chromosome 6H. Another resistance QTL for both pests was mapped on linkage group 5H (Igri × Franka population). These data provide first evidence for common resistance mechanisms against different root lesion nematode species. The molecular markers are a powerful tool for the selection of resistant barley lines among segregating populations because resistance tests are time consuming and laborious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号