首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 168 毫秒
1.
利用PCR、UT-PCR、克隆及测序等技术,对强直性肌营养不良基因(MT-PK)3′-非翻译区分别用Taq,Taq+Pwo DNA聚合酶进行了扩增、克隆和测序,研究了PCR产物末端组成情况,并比较了上述两种DNA聚合酶对PCR产物末端的影响.结果在用Taq DNA聚合酶扩增的PCR产物主要得到3′端突出1个A(占67.3%,35/52);在Taq+Pwo DNA聚合酶扩增的PCR产物末端中得到3′端+A的仅占17.4%,而-1的占34.8%,与前者显著不同.表明PCR扩增产物的末端是复杂多样的.  相似文献   

2.
耐热DNA聚合酶基因的克隆及在大肠杆菌中的表达   总被引:5,自引:0,他引:5  
用PCR法从水生栖热菌菌株YT-1中扩增耐热DNA聚合酶基因,得到2.5kb的DNA片段t扩增片段重组到pUCl8中测序证实为Taq DNA聚合酶基因,将该片段重组到pBV221温控表达质粒中,在大肠杆菌中表达出94kDa的重组蛋白,100ml培养物的细胞产酶为1.5×105u,表达的蛋白能催化PCR反应的进行。  相似文献   

3.
高GC含量DNA模板的PCR扩增   总被引:1,自引:0,他引:1  
目的:探索高GC含量DNA的PCR扩增条件,为扩增达托霉素生物合成基因簇及拼接奠定基础。方法:在PCR扩增体系中,使用高保真的聚合酶及添加不同浓度的DMSO、7-deaza-dGTP等增强剂,并选择合适的PCR循环程序,优化富含GC的DNA的PCR扩增条件。结果:向反应体系中额外添加1%~4%的DMSO可以显著提高富含GC的DNA的PCR扩增产物量,但会降低其特异性;7-deaza-dGTP可以提高扩增产物的特异性及保真度,但产量会有所下降。应用touch down PCR并在体系中添加7-deaza-dGTP能够提高扩增产物的特异性和产率,增加扩增的保真度。结论:应用优化的PCR扩增条件将所有达托霉素生物合成基因簇分段扩增出来,并可扩增出长达6 kb的片段,且序列完全正确,可以进行后续拼接。  相似文献   

4.
PCR直接测序方法及其在肿瘤研究中的应用   总被引:4,自引:0,他引:4  
PCR直接测序技术是PCR扩增与核酸测序技术相结合的一种方法.根据此技术的原理,建立了一种以PCR扩增引物为测序引物,α-35S dATP直接掺入,Taq DNA聚合酶直接测序PCR扩增产物的方法.实验表明:该方法简便、快速、稳定.用此方法对人食管癌组织中的抗癌基因p53进行了突变测序分析,发现食管癌组织中p53存在点突变,插入、丢失移码突变.并用此方法对人和恒河猴的p53内含子序列进行了测定,发现猴第5内含子为81个核苷酸,第8内含子为92个核苷酸.  相似文献   

5.
摘要 目的:构建携带绿色荧光报告基因的人冠状病毒OC43感染性克隆。方法:设计带有绿色荧光蛋白的人冠状病毒OC43感染性克隆基因组序列,分段合成后利用融合聚合酶链式反应等方法得到8个亚基因组片段,通过酵母转化关联重组技术获得重组质粒,转染HEK-293T细胞进行病毒拯救,收获转染细胞培养上清感染靶细胞分析病毒拯救情况。结果:获得人冠状病毒OC43感染性克隆重组质粒,将该质粒转染细胞后成功获得携带绿色荧光蛋白报告基因的人冠状病毒OC43重组病毒。结论:成功构建了人冠状病毒OC43感染性克隆并获得重组病毒,为针对冠状病毒的基础和应用研究提供了有效工具。  相似文献   

6.
目的建立快速检测实验大鼠冠状病毒和仙台病毒的双重PCR方法。方法根据大鼠冠状病毒N基因、仙台病毒L基因设计特异性引物;经过双重PCR优化,特异性和敏感性的检测,建立双重PCR体系。应用该PCR体系检测人工感染仙台病毒组织DNA样本和实验动物组织样本,并与ELISA方法比对。结果双重PCR扩增出大鼠冠状病毒(168 bp)和仙台病毒(262 bp)目的条带,PCR扩增产物测序结果利用核酸BLAST功能进行同源序列对比,仙台病毒和大鼠冠状病毒同源性分别为100%和99%。仙台病毒和大鼠冠状病毒的检测下限为1.56×10~2 copies/μL。特异性检测对小鼠肝炎病毒扩增,产生片段大小近似大鼠冠状病毒产物。应用建立的双重PCR体系检测人工感染仙台病毒组织DNA样本,30份DNA标本均被检出;检测94份实验动物肺组织样本,结果均阴性。结论建立的双重PCR方法操作简单、快速、特异性强、灵敏度高,能够实现对实验动物仙台病毒和大鼠冠状病毒病原体的快速检测。  相似文献   

7.
本实验通过建立CYP2C19*2、*3和*17基因多态性PCR反应体系和条件,筛选出4μL体系中各因素最佳水平。采用SNaPshot技术对CYP2C19基因3个SNP位点*2、*3和*17同时进行复合扩增检测,利用L9(34)正交实验设计,对影响PCR反应体系和条件的3个因素(PCR Mix, Taq DNA聚合酶,循环次数)在3个水平上进行优化,结果采用综合评分法和极差分析法进行分析。用3组已知样本对正交优化所得条件进行重复性和稳定性验证。结果表明CYP2C19*2、*3和*17基因PCR扩增体系的影响因素依次为:PCR Mix>循环数>Taq DNA聚合酶。最佳反应体系为PCR Mix 2.0μL、Taq DNA聚合酶0.2μL、循环次数32次。3组样本验证效果满意。优化的CYP2C19*2、*3和*17基因PCR反应体系稳定性高,重复性和经济性较好,为该基因多态性的大规模调查奠定了基础。  相似文献   

8.
9.
垃圾填埋场中厌氧真菌18S rDNA的PCR扩增及鉴定   总被引:3,自引:0,他引:3  
采用机械破壁法直接从来自 7个不同地区的垃圾填埋场滤液样本中提取真菌DNA ,应用真菌通用引物NS1和NS8扩增 18SrDNA(约 180 0bp) ,多聚酶链式反应 (PCR)产物的琼脂糖凝胶电泳结果表明所有的样本均得到了扩增 ;以PCR产物作为模板 ,采用厌氧真菌Chytridiomycetes科的专用引物Chyt 719和Chyt 15 5 3进行二次PCR扩增 (约 85.7bp) ,该阳性扩增产物克隆和测序结果首次表明在食草动物瘤胃中存在的厌氧真菌Chytridiomycetes也存在于垃圾填埋场中 ,且为Neocallimastix属  相似文献   

10.
一种高特异性的改良降落PCR   总被引:3,自引:0,他引:3  
为提高基因组DNA中的基因PCR检出的特异性,设计了一种改良的降落PCR程序,并分别用TaqDNA聚合酶及高保真PfuDNA聚合酶进行实验。自盐藻Dunaliella bardawil中提取基因组DNA作为PCR模板,使用TaqDNA聚合酶及PfuDNA聚合酶,运用普通PCR和降落PCR程序,扩增胡萝眩素生物合成相关基因(cbr)上游启动子序列,并电泳比较PCR扩增产物的特异性。结果显示,使用普通Taq酶PCR,普通PCR程序产生200bp,500bp和1272bp长的三条带,而TD-PCR程序仅克隆出1272bp的特异带;利用高保真的PfuDNA聚合酶作PCR,在TD-PCR泳道中仅有1272bp一条带,而普通PCR除了1272bp的特异带外,还出现一条500bp的非特异带。无论使用普通Taq酶或高保真酶Pfu,改良的降落PCR程序均明显提高PCR的特异性,类似的降落PCR程序可望用于克隆用普通PCR难以克隆的基因片段,或在假阳性难以去除的情况下提高PCR的特异性。  相似文献   

11.
The industry of next-generation sequencing is constantly evolving, with novel library preparation methods and new sequencing machines being released by the major sequencing technology companies annually. The Illumina TruSeq v2 library preparation method was the most widely used kit and the market leader; however, it has now been discontinued, and in 2013 was replaced by the TruSeq Nano and TruSeq PCR-free methods, leaving a gap in knowledge regarding which is the most appropriate library preparation method to use. Here, we used isolates from the pathogenic fungi Cryptococcus neoformans var. grubii and sequenced them using the existing TruSeq DNA v2 kit (Illumina), along with two new kits: the TruSeq Nano DNA kit (Illumina) and the NEBNext Ultra DNA kit (New England Biolabs) to provide a comparison. Compared to the original TruSeq DNA v2 kit, both newer kits gave equivalent or better sequencing data, with increased coverage. When comparing the two newer kits, we found little difference in cost and workflow, with the NEBNext Ultra both slightly cheaper and faster than the TruSeq Nano. However, the quality of data generated using the TruSeq Nano DNA kit was superior due to higher coverage at regions of low GC content, and more SNPs identified. Researchers should therefore evaluate their resources and the type of application (and hence data quality) being considered when ultimately deciding on which library prep method to use.  相似文献   

12.
Phi29 DNA polymerase (Phi29 Pol) has been successfully applied in DNA nanoball-based sequencing, real-time DNA sequencing from single polymerase molecules and nanopore sequencing employing the sequencing by synthesis (SBS) method. Among these, polymerase-assisted nanopore sequencing technology analyses nucleotide sequences as a function of changes in electrical current. This ionic, current-based sequencing technology requires polymerases to perform replication at high salt concentrations, for example 0.3 M KCl. Nonetheless, the salt tolerance of wild-type Phi29 Pol is relatively low. Here, we fused helix–hairpin–helix (HhH)2 domains E-L (eight repeats in total) of topoisomerase V (Topo V) from the hyperthermophile Methanopyrus kandleri to the Phi29 Pol COOH terminus, designated Phi29EL DNA polymerase (Phi29EL Pol). Domain fusion increased the overall enzyme replication efficiency by fourfold. Phi29EL Pol catalysed rolling circle replication in a broader range of salt concentrations than did Phi29 Pol, extending the KCl concentration range for activity up to 0.3 M. In addition, the mutation of Glu375 to Ser or Gln increased Phi29EL Pol activity in the presence of KCl. In this work, we produced a salt-tolerant Phi29 Pol derivative by means of (HhH)2 domain insertion. The multiple advantages of this insertion make it a good substitute for Phi29 Pol, especially for use in nanopore sequencing or other circumstances that require high salt concentrations.  相似文献   

13.
Thermophilic DNA polymerases of the polB family are of great importance in biotechnological applications including high-fidelity PCR. Of particular interest is the relative promiscuity of engineered versions of the exo- form of polymerases from the Thermo- and Pyrococcales families towards non-canonical substrates, which enables key advances in Next-generation sequencing. Despite this there is a paucity of structural information to guide further engineering of this group of polymerases. Here we report two structures, of the apo form and of a binary complex of a previously described variant (E10) of Pyrococcus furiosus (Pfu) polymerase with an ability to fully replace dCTP with Cyanine dye-labeled dCTP (Cy3-dCTP or Cy5-dCTP) in PCR and synthesise highly fluorescent “CyDNA” densely decorated with cyanine dye heterocycles. The apo form of Pfu-E10 closely matches reported apo form structures of wild-type Pfu. In contrast, the binary complex (in the replicative state with a duplex DNA oligonucleotide) reveals a closing movement of the thumb domain, increasing the contact surface with the nascent DNA duplex strand. Modelling based on the binary complex suggests how bulky fluorophores may be accommodated during processive synthesis and has aided the identification of residues important for the synthesis of unnatural nucleic acid polymers.  相似文献   

14.
DNA-dependent DNA polymerases are the main enzymes that catalyze DNA replication. Higher eukaryotic cells have 19 DNA polymerases with strikingly different properties [1]. Mitochondrial DNA polymerase γ of the A family and most of the nuclear enzymes of the B family are high-fidelity DNA polymerases that are involved not only in genomic DNA replication but also in DNA repair. Among the other 15 proteins, DNA polymerases belonging to the X and Y families have a special place. The majority of these enzymes are also involved in repair, including base excision repair and nonhomologous end joining. Some of them play a specific role in replication of damaged DNA templates. This process is referred to as translesion synthesis (TLS). DNA polymerases β and λ, which belong to the X structural family, are polyfunctional enzymes; their properties and functions are discussed.  相似文献   

15.
目的:利用二代测序技术检测GT1-7细胞中KISS1和GnRH基因启动子范围内的甲基化状态,并用金标准的亚硫酸氢盐修饰后的克隆测序作为对照,比较二代测序与金标准克隆测序在研究DNA甲基化检测中的差别。方法:提取GT1-7细胞基因组DNA并进行亚硫酸氢盐处理。进行巢式PCR,将PCR产物进行二代测序。同时采用金标准的亚硫酸氢盐修饰后克隆测序的方法作为对照,对相同批次的PCR产物进行克隆测序。结果:PCR产物二代测序结果表明KISS1和GnRH两个基因的27个CpG甲基化位点信息完整,结果准确。挑取10个克隆进行一代测序结果表明序列无丢失,KISS1和GnRH两个基因的27个CpG甲基化位点信息完整。结论:利用高通量的二代测序技术能够有效的对DNA甲基化的PCR产物进行检测,二代测序和克隆测序都是研究DNA甲基化的有效方法,但前者与克隆测序相比每一个读取序列(reads)都相当于一个单克隆,且二代测序每个区段得到成百上千个reads,因此二代测序结果更加精确。  相似文献   

16.
Bisulfite sequencing is a key methodology in epigenetics. However, the standard workflow of bisulfite sequencing involves heat and strongly basic conditions to convert the intermediary product 5,6-dihydrouridine-6-sulfonate (dhU6S) (generated by reaction of bisulfite with deoxycytidine (dC)) to uracil (dU). These harsh conditions generally lead to sample loss and DNA damage while milder conditions may result in incomplete conversion of intermediates to uracil. Both can lead to poor recovery of bisulfite-treated DNA by the polymerase chain reaction (PCR) as either damaged DNA and/or intermediates of bisulfite treatment are poor substrate for standard DNA polymerases. Here we describe an engineered DNA polymerase (5D4) with an enhanced ability to replicate and PCR amplify bisulfite-treated DNA due to an ability to bypass both DNA lesions and bisulfite intermediates, allowing significantly milder conversion conditions and increased sensitivity in the PCR amplification of bisulfite-treated DNA. Incorporation of the 5D4 DNA polymerase into the bisulfite sequencing workflow thus promises significant sensitivity and efficiency gains.  相似文献   

17.
The MinION is a miniaturized high-throughput next generation sequencing platform of novel conception. The use of nucleic acids derived from formalin-fixed paraffin-embedded samples is highly desirable, but their adoption for molecular assays is hurdled by the high degree of fragmentation and by the chemical-induced mutations stemming from the fixation protocols. In order to investigate the suitability of MinION sequencing on formalin-fixed paraffin-embedded samples, the presence and frequency of BRAF c.1799T?>?A mutation was investigated in two archival tissue specimens of Hairy cell leukemia and Hairy cell leukemia Variant. Despite the poor quality of the starting DNA, BRAF mutation was successfully detected in the Hairy cell leukemia sample with around 50% of the reads obtained within 2 h of the sequencing start. Notably, the mutational burden of the Hairy cell leukemia sample as derived from nanopore sequencing proved to be comparable to a sensitive method for the detection of point mutations, namely the Digital PCR, using a validated assay. Nanopore sequencing can be adopted for targeted sequencing of genetic lesions on critical DNA samples such as those extracted from archival routine formalin-fixed paraffin-embedded samples. This result let speculating about the possibility that the nanopore sequencing could be trustably adopted for the real-time targeted sequencing of genetic lesions. Our report opens the window for the adoption of nanopore sequencing in molecular pathology for research and diagnostics.  相似文献   

18.
A zero-mode waveguide (ZMW) is a nanoscale optical waveguide driven at a frequency below its cut-off. In this mode, the electric field, instead of traveling down the axis of the conducting cavity, decays exponentially. By fabricating waveguides with sub-wavelength diameters and illuminating them with laser light, the electric field in the waveguide is confined enough to enable single-molecule optical detection at micromolar concentration [1]. Immobilizing single DNA polymerases in ZMWs and using special phosphate-fluorescently labeled dNTPs form the basis for single-molecule real-time DNA sequencing, one of the most promising next-generation sequencing platforms [2]. In this method, the polymerase replicates the sample DNA, and as it incorporates new bases into the product strand, the labeled dNTPs emit a burst of light before the phosphate is cleaved off. The sequence of colors corresponds to the DNA sequence (see Figure 1 below from Eid et al., 2009). Because the ZMW aperture’s diameter is sub-diffraction-limit, it is impossible to optically distinguish one polymerase in a ZMW from two. Having only one polymerase in each waveguide is critical to sequencing accuracy. In its present state, experimenters use diffusion to fill ZMWs with polymerases, resulting in a Poisson distribution for filling ZMWs, and consequently a theoretical limit of 36.8% of ZMWs having only one polymerase [2]. We achieve full polymerase occupancy of ZMWs by fabricating the structures on an ultrathin silicon nitride membrane and drilling a nanopore at the base of each waveguide with an ion beam. A short DNA fragment with biotin on either end is conjugated to a streptavidin and then drawn into the nanopore with a voltage bias. There is then a free biotin at the base of the ZMW. A polymerase–streptavidin complex can diffuse into the ZMW and bind to the exposed biotin. Because the nanopore is too small to fit more than one molecule, only one ZMW will bind to a biotin in the nanopore. Upon flushing the ZMW chamber, the biotin-bound polymerase will remain trapped in the pore, and only a single polymerase will remain at the base of each waveguide.   相似文献   

19.
Replication slippage of DNA polymerases is a potential source of spontaneous genetic rearrangements in prokaryotic and eukaryotic cells. Here we show that different thermostable DNA polymerases undergo replication slippage in vitro, during single-round replication of a single-stranded DNA template carrying a hairpin structure. Low-fidelity polymerases, such as Thermus aquaticus (Taq), high-fidelity polymerases, such as Pyrococcus furiosus (Pfu) and a highly thermostable polymerase from Pyrococcus abyssi (Pyra exo(-)) undergo slippage. Thermococcus litoralis DNA polymerase (Vent) is also able to slip; however, slippage can be inhibited when its strand-displacement activity is induced. Moreover, DNA polymerases that have a constitutive strand-displacement activity, such as Bacillus stearothermophilus DNA polymerase (Bst), do not slip. Polymerases that slip during single-round replication generate hairpin deletions during PCR amplification, with the exception of Vent polymerase because its strand-displacement activity is induced under these conditions. We show that these hairpin deletions occurring during PCR are due to replication slippage, and not to a previously proposed process involving polymerization across the hairpin base.  相似文献   

20.
Abstract

Polymerase chain reaction (PCR) is the most commonly used method for nucleic acids amplification. PCR performance depends on several causes, among which the quality of primers is one of the main determinants affecting specificity, sensitivity and reliability of the reaction. Here, we report on the results of the detailed study devoted to the dimerization of the primers during PCR. The course and specificity of the reaction were studied on the model DNA templates as well as genomic DNA using primers that form amplifiable heterodimeric structures with different thermodynamic stability. It was confirmed that more than two 3′-overlapping nucleotides cause a considerable accumulation of primer dimers. It turned out that the presence of any DNA promotes the formation of dimers even for primers, which do not tend to nonspecific amplification in the absence of DNA. It was shown that dimerization could not be eliminated by commonly used techniques. Even the use of hot-start DNA polymerases does not prevent PD formation if primers with stable 3′-overlapping are employed. Despite several advantages of PCR with abutting primers, their close disposition has no benefits regarding the formation of PD if low-quality primers are utilized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号