首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为了研究光周期和高脂食物对小型哺乳动物能量代谢和产热的影响,将成年雌性高山姬鼠分别驯化于长光照低脂、高脂食物和短光照低脂、高脂食物条件下,7周后测定动物的体重、能量摄入、产热、身体组成、血清瘦素浓度以及体脂含量等参数。结果发现:1)短光照抑制体重增长,降低血清瘦素浓度,增加非颤抖性产热;2)高脂食物使摄入能减少,消化率和体脂含量提高,但未显著影响体重、基础代谢率、非颤抖性产热和血清瘦素浓度;3)血清瘦素浓度与摄入能不相关,但与体脂重量正相关。结果暗示:短光照下瘦素作用敏感性增加和产热能力增强,可能介导了抵抗高脂食物诱导的肥胖。在野外条件下,高山姬鼠能通过能量代谢和产热的适应性调节避免体重的过度增长,有利于降低捕食风险,增强生存能力。  相似文献   

2.
为探讨高蛋白食物和繁殖对布氏田鼠食物摄入和产热等特征的效应,将成年雌性布氏田鼠分为非繁殖对照食物组、非繁殖高蛋白组、繁殖对照食物组和繁殖高蛋白组。对照食物蛋白含量为17.7%,高蛋白食物的蛋白含量为36.6%。实验过程中测定动物的体重、食物摄入量、静止代谢率(RMR)、身体成分、内脏器官重量、褐色脂肪组织(BAT)解偶联蛋白1(UCP1)含量、血清瘦素和催乳素水平等。结果发现:高蛋白食物明显抑制布氏田鼠的体重,但动物在妊娠期和哺乳期,这种抑制作用消失。高蛋白食物明显抑制非繁殖组动物的干物质摄入、摄入能和消化能,但对哺乳期动物没有影响。高蛋白食物提高了非繁殖期和繁殖期动物的消化率,降低了血清瘦素浓度,但仅提高了繁殖期动物肾脏的重量,而降低了盲肠的重量。RMR、UCP1含量和血清催乳素浓度等则不受高蛋白食物的影响。繁殖期动物的体重、能量摄入、RMR和血清催乳素浓度等均高于非繁殖动物。这些结果表明,食物蛋白含量可影响布氏田鼠的能量代谢和产热特征等,且在繁殖期和非繁殖期有不同的反应方式。  相似文献   

3.
长期强迫运动对布氏田鼠体重和血清瘦素浓度的影响   总被引:1,自引:0,他引:1  
动物稳定体重的维持需要能量摄入和消耗之间的平衡.运动是影响动物能量平衡的重要因素之一.为了理解运动对布氏田鼠的生理学效应,我们在室内条件下,运用踏车测定了强迫运动训练6周后动物的体重、体脂含量、摄食量和瘦素浓度的变化.摄食量采用代谢笼法测定,体脂含量采用索氏提取法,血清瘦素含量采用放免试剂盒测定.结果发现强迫运动训练6周对布氏田鼠的体重和摄食量都无显著影响,与非运动训练组田鼠相比,运动训练组田鼠的身体脂肪重量降低了3.5 g,运动组田鼠的血清瘦素水平比对照组下降了30%.对照组田鼠的血清瘦素与体脂含量具有明显的相关性,但运动组则不具有相关性.这些结果表明在强迫运动训练期间布氏田鼠不是通过增加食物摄入,而可能是通过动员贮存的脂肪和减少非活动性能量消耗等方式来维持自身的能量平衡.瘦素在长期强迫运动训练过程中对身体脂肪含量的变化具有调节作用.  相似文献   

4.
大绒鼠冷驯化和脱冷驯化能量代谢特征的变化   总被引:1,自引:1,他引:0  
通过测定冷驯化(5℃)到脱冷驯化(30℃)条件下,大绒鼠(Eothenomys miletus)的体重、摄入能、静止代谢率(RMR)、非颤抖性产热(NST)和血清瘦素含量等参数,探讨了血清瘦素浓度与能量收支的关系。结果表明,冷驯化可致大绒鼠体重下降,RMR、NST、摄入能升高,血清瘦素浓度降低;脱冷驯化后大绒鼠体重增加,RMR、NST、摄入能降低,血清瘦素浓度增加。血清瘦素含量与体重呈正相关,与RMR、NST、摄入能呈负相关。表明大绒鼠的体重、摄入能和产热能力具有较强的可塑性,且瘦素可能参与了大绒鼠适应冷驯化及恢复过程中的能量平衡和体重的调节。  相似文献   

5.
自愿转轮运动对雄性长爪沙鼠体重和能量代谢的影响   总被引:4,自引:1,他引:3  
胡振东  王德华 《兽类学报》2007,27(2):123-129
运动是影响动物能量平衡和体重变化的重要因素之一。为研究自愿转轮运动对体重和能量代谢的影响,我们监测了8 周自愿转轮运动过程中,雄性长爪沙鼠的体重、能量摄入、消化率、静止代谢率(RMR) 和非颤抖性产热(NST)的变化,以及8 周后的体脂含量、血清甲状腺激素(T3、T4 )和瘦素(leptin)水平的变化等。结果发现,8 周自愿转轮运动增加了长爪沙鼠的体重和能量摄入以及血清瘦素水平(血清瘦素浓度比对照组高27% ),但对消化率、RMR 和褐色脂肪组织的线粒体蛋白浓度等没有明显影响。尽管体脂含量和血清T3 和T4 没有显著差异,但运动组体脂含量比对照组高33%,血清T3 和T4 水平分别比对照组低10% 和38%。血清瘦素浓度与体脂重量呈正相关。因此,自动转轮运动并没有降低动物的体重和体脂含量,但瘦素和甲状腺素在雄性长爪沙鼠能量代谢和能量平衡中的作用尚需进一步确定。  相似文献   

6.
赵志军  曹静  陈可新 《兽类学报》2014,34(2):149-157
为阐明小型哺乳动物体重和能量代谢的季节性变化以及生理调节机制,将黑线仓鼠驯化于自然环境下12个月,测定其体重、能量收支、身体组织器官和血清瘦素水平的季节性变化。黑线仓鼠能量摄入和支出的季节性变化显著,冬季摄入能、基础代谢率(BMR)、非颤抖性产热(NST)显著高于夏季。体重季节性变化不显著,但身体组织器官重量呈现显著的季节性变化,冬季肝脏、心脏、肾脏以及消化道重量显著高于夏季。体脂含量夏季最高,冬季最低,冬季显著低于夏、秋和春季(P <0.01)。血清瘦素水平的季节性变化显著,夏季瘦素水平比秋、冬季分别高88.2% 和52.4% (P <0.05)。结果表明,黑线仓鼠体重维持季节性稳定,与“调定点假说”的预测不同;但脂肪含量和血清瘦素季节性变化显著,符合该假说。夏季血清瘦素升高具有抑制能量摄入的作用,冬季血清瘦素可能是促进代谢产热的重要因子,瘦素对能量代谢和体重的调节作用与气候的季节性变化有关。    相似文献   

7.
小型哺乳动物通过产热能力的调整来应对环境的胁迫。为探究外源瘦素对不同地区大绒鼠(Eothenomys miletus)适应性产热的影响,选取云南昆明和大理地区捕获的大绒鼠各14只,置于25℃±1℃,光周期为12L∶12D的环境中,每日腹腔注射瘦素,持续28 d。以LT502电子天平每两天测定大绒鼠的体重,采用食物平衡法每两天测定大绒鼠摄食量,以便携式呼吸代谢测量系统每7天测定静止代谢率(RMR)、非颤抖性产热(NST)。第28天处死动物后,采用酶联免疫吸附法测定线粒体蛋白含量、线粒体细胞色素c氧化酶(COX)活性、解偶联蛋白1(UCP1)含量、血清三碘甲状腺原氨酸(T3)、甲状腺素(T4)、瘦素水平以及促甲状腺激素释放激素(TRH)和促肾上腺皮质激素释放激素(CRH)水平。结果表明,注射瘦素后昆明和大理地区大绒鼠的体重和摄食量显著降低,RMR和NST增强,肝脏中线粒体蛋白含量和COX活性,褐色脂肪组织(BAT)中COX活性和UCP1含量,及血清T3、T4、T3/T4比值、TRH和CRH浓度均增加。瘦素水平与体重、摄食量呈负相关,血清T3水平与NST和UCP1含量呈正相关。此外,注射前昆...  相似文献   

8.
单宁酸对布氏田鼠能量代谢的影响   总被引:4,自引:4,他引:0  
为了解单宁酸对成年布氏田鼠(Lasiopodomys bandtii**)能量代谢和产热的影响,本文采用含0、3.3%和6.6%单宁酸浓度的食物饲喂布氏田鼠21 d,对其体重、基础代谢率、非颤抖性产热和能量收支等进行了测定。代谢率采用封闭式流体压力呼吸计测定;非颤抖性产热用皮下注射去甲肾上腺素诱导;能量摄人采用食物平衡法测定。结果发现:(1) 单宁酸食物对布氏田鼠的体重没有明显影响;(2)取食含6.6%单宁酸食物的动物的基础代谢率于第10 d高于对照组。20 d时,3组动物的基础代谢率没有显著差异;(3) 单宁酸食物对非颤抖性产热没有显著影响;(4) 食用含单宁酸食物的动物的摄人能和消化能于第10 d显著低于对照组,但第20 d时则差异不显著。这些结果表明:布氏田鼠的基础代谢率和能量摄入对单宁酸的反应具有时段性,短期内能量消耗增加,随着动物对食物的适应,生理功能恢复到正常水平。  相似文献   

9.
光周期对布氏田鼠和长爪沙鼠体重和能量代谢的影响   总被引:13,自引:6,他引:7  
本文测定了光周期对雄性布氏田鼠和长爪沙鼠的体重、基础代谢率和能量代谢的影响。动物从长光照(16L∶8D , LD) 转入短光照(8L∶16D , SD) 条件下驯化6 周(田鼠) 和7 周(沙鼠) 。结果显示: (1) 无论在LD还是SD 条件下, 两种动物的体重都趋于增加, 但反应程度不同也具有种间差异性。两种动物的体重对光周期的反应有时段性, 约14 d 前两种动物的体重增加迅速, 而后增加缓慢, 3 周左右趋于稳定。短光照条件下布氏田鼠和长爪沙鼠的体重分别增长了37 %和11 % , 均低于长光照组(分别为47 %和25 %) , 说明短光照条件下布氏田鼠和长爪沙鼠的体重增长较长光照缓慢; (2) 光照对两种动物的摄入能、消化能和可代谢能均没有显著影响,摄入能与体重的增长无关; (3) 光照对两种动物的基础代谢率无显著影响。这些结果表明: 布氏田鼠和长爪沙鼠在自然环境中, 可能以光周期作为一种信号, 当环境温度降低、食物质量变劣时, 采取降低体重以减少绝对能量需求的策略而适应环境。  相似文献   

10.
能量代谢的生理调节是小型哺乳动物应对不同环境温度的重要策略之一,为探讨暖温下代谢产热在体重和体脂适应性调节中的作用和机理,本研究将雌性黑线仓鼠(Cricetulus barabensis)暴露于暖温(30°C)1个月、3个月和4个月,测定体重、摄入能、代谢产热、体脂含量、褐色脂肪组织(BAT)细胞色素c氧化酶(COX)活性和解偶联蛋1 (UCP1) mRNA表达等。结果显示,暖温对黑线仓鼠体重无显著影响,但使脂肪含量显著增加。与室温组相比(21°C),暖温组消化率显著升高,但摄入能和消化能显著降低;暖温下非颤抖性产热(NST)显著降低,脑、肝脏和心脏COX活性、BAT COX活性和UCP1 mRNA的表达显著下调。结果表明,暖温下降低代谢产热补偿了能量摄入的减少,机体处于正能量平衡状态,是脂肪含量显著增加的主要原因之一。脑、肝脏、心脏和BAT代谢活性降低是代谢产热降低的主要机制,与脂肪累积有关。  相似文献   

11.
能量代谢的适应性调节是小型哺乳动物应对环境季节性变化的主要策略之一。为探讨不同温度下动物在代谢产热能量支出与脂肪累积之间的权衡策略,以成年雄性黑线仓鼠为研究对象开展了3 个实验:实验1 将动物驯化于高脂和低脂食物;实验2 将动物暴露于低温(5℃)和暖温(30℃);实验3 将饲喂高脂食物的动物暴露于低温。以食物平衡法测定摄食量、摄入能和消化率,以开放式氧气分析仪测定代谢产热,以索氏抽提法测定脂肪含量。结果发现,取食高脂食物的黑线仓鼠摄食量显著减少,但脂肪累积显著增加;暖温下摄食量显著减少,但体脂含量显著增加,低温下摄食量显著升高,但体脂含量显著减少;饲喂高脂食物的黑线仓鼠在低温下摄入能显著增加,非颤抖性产热增强,但体脂含量显著降低。结果表明高脂食物对黑线仓鼠体脂累积的影响与环境温度有关,低温诱导脂肪动员,暖温促进脂肪贮存;低温下黑线仓鼠增加能量摄入不能完全补偿用于产热的能量支出,导致脂肪动员增加;暖温下代谢产热降低是脂肪累积的主要因素;与能量摄入相比代谢产热的能量支出在体脂累积的适应性变化中发挥更重要的作用。  相似文献   

12.
Obesity and diabetes are associated with increased fatty acid availability in excess of muscle fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in the development of skeletal-muscle insulin resistance. We tested the hypothesis that 'Western' and high fat diets differentially cause maladaptation of cardiac- and skeletal-muscle fatty acid oxidation, resulting in cardiac contractile dysfunction. Wistar rats were fed on low fat, 'Western' or high fat (10, 45 or 60% calories from fat respectively) diet for acute (1 day to 1 week), short (4-8 weeks), intermediate (16-24 weeks) or long (32-48 weeks) term. Oleate oxidation in heart muscle ex vivo increased with high fat diet at all time points investigated. In contrast, cardiac oleate oxidation increased with Western diet in the acute, short and intermediate term, but not in the long term. Consistent with fatty acid oxidation maladaptation, cardiac power decreased with long-term Western diet only. In contrast, soleus muscle oleate oxidation (ex vivo) increased only in the acute and short term with either Western or high fat feeding. Fatty acid-responsive genes, including PDHK4 (pyruvate dehydrogenase kinase 4) and CTE1 (cytosolic thioesterase 1), increased in heart and soleus muscle to a greater extent with feeding a high fat diet compared with a Western diet. In conclusion, we implicate inadequate induction of a cassette of fatty acid-responsive genes, and impaired activation of fatty acid oxidation, in the development of cardiac dysfunction with Western diet.  相似文献   

13.
The present study was designed to examine whether photoperiod alone was effective to induce seasonal changes in physiology in voles (Eothenomys.) from the Hengduan Mountain region. Eothenomys miletus were randomly assigned into either long photoperiod (LD; 16L: 8D) or short photoperiod (SD; 8L: 16D) for 4 weeks at constant temperature (25 °C). At the end of acclimation, SD voles showed lower body mass and body fat coupled with higher energy intake than LD voles. SD greatly enhanced the thermogenic capacity of E. miletus, as indicated by an elevated nonshivering thermogenesis (NST), mitochondrial protein in brown adipose tissue (BAT); basal metabolic rate (BMR) was also raised. Although no variations in serum leptin levels were found between SD and LD voles, serum leptin levels were positively correlated with body mass and body fat mass, and negatively correlated with energy intake and UCP1 content in BAT, respectively. To summarize, SD alone is effective in inducing higher thermogenic capacities and energy intake coupled with lower body mass and body fat mass in root voles. Leptin is potentially involved in the photoperiod induced body mass regulation and thermogenesis in E. miletus. Our study shows that SD alone is effective.  相似文献   

14.
The present study was designed to examine whether photoperiod alone was effective to induce seasonal regulations in physiology in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau noted for its extreme cold environment. Root voles were randomly assigned into either long photoperiod (LD; 16L:8D) or short photoperiod (SD; 8L:16D) for 4 weeks at constant temperature (20 degrees C). At the end of acclimation, SD voles showed lower body mass and body fat coupled with higher energy intake than LD voles. SD greatly enhanced thermogenic capacities in root voles, as indicated by elevated basal metabolic rate (BMR), nonshivering thermogenesis (NST), mitochondrial protein content and uncoupling protein-1 (UCP1) content in brown adipose tissue (BAT). Although no variations in serum leptin levels were found between SD and LD voles, serum leptin levels were positively correlated with body mass and body fat mass, and negatively correlated with energy intake and UCP1 content in BAT, respectively. To summarize, SD alone is effective in inducing higher thermogenic capacities and energy intake coupled with lower body mass and body fat mass in root voles. Leptin is potentially involved in the photoperiod induced body mass regulation and thermogenesis in root voles.  相似文献   

15.
Brown adipose tissue (BAT) thermogenesis is an uncoupled ATPase-independent thermogenic mechanism. Ion transport by the Na,K pump is an ATPase- dependent thermogenic mechanism. Both have been proposed as mechanisms of altered energy expenditure during states of dietary energy surfeit and deficit. Our aim was to study these mechanisms during diet-induced obesity and weight loss. Over 36 weeks rats were fed lard- or tallow-based diets (63% energy as fat), or a control diet (12% energy as fat). During periods of restriction rats were fed 50% of the energy intake of controls in the form of a control diet. Several components of thermogenic response increased in rats eating high fat diets and decreased following dietary restriction. BAT activation occurred, particularly with a lard-based diet, as indicated by increased GDP binding and uncoupling protein (UCP) content. Na,K pump activity in thymocytes increased with the feeding of both high fat diets at some time points. Plasma T3 level increased in rats eating the lard-based diet and decreased with dietary restriction regardless of previous diet. Resting metabolic rate (RMR) of the animals was unchanged despite increases in these thermogenic components and was decreased in all groups following dietary restriction. Our results indicate a lack of any major role for activated BAT thermogenesis in mitigating the extent of the obesity induced by the high fat diets. The reasons for the differences in response to the two different sources of saturated fat, lard, and tallow, are not clear.  相似文献   

16.
The effects of a high-fat diet supplying a constant energy/protein ratio, with and without overeating, on energy intake and expenditure was studied in mature male rats. A control group (LF) received ad libitum access to a low-fat diet. Body weight gain, efficiency of food utilization, and dietary-induced thermogenesis were increased relative to controls in a group with ad libitum access to the high-fat diet (HF-A), but not in a group which was pair fed the diet (HF-P) in amounts (kcal) equal to that of LF animals. However, the individual variability within the HF-A group was high for each measure. An arbitrary separation of that group into 2 subgroups (based on high vs low weight gain) produced one subgroup with increased efficiency, greater weight gain and no change in dietary-induced thermogenesis (HF-AH), and another with no difference in efficiency or in weight gain from the LF group but which had higher dietary-induced thermogenesis (HF-AL). Food intake was slightly, but not significantly, greater for the HF-AH subgroup than for the HF-AL subgroup. We conclude that rats can increase thermogenesis in response to overeating but that the increase is highly variable. The thermogenic response appears to be related to the overeating rather than to the fat content of the diet.  相似文献   

17.
Adaptive thermogenesis is the cellular process transforming chemical energy into heat in response to cold. A decrease in adaptive thermogenesis is a contributing factor to obesity. However, the molecular mechanisms responsible for the compromised adaptive thermogenesis in obese subjects have not yet been elucidated. In this study we hypothesized that Toll-like receptor 4 (TLR4) activation and subsequent inflammatory responses are key regulators to suppress adaptive thermogenesis. To test this hypothesis, C57BL/6 mice were either fed a palmitate-enriched high fat diet or administered with chronic low-dose LPS before cold acclimation. TLR4 stimulation by a high fat diet or LPS were both associated with reduced core body temperature and heat release. Impairment of thermogenic activation was correlated with diminished expression of brown-specific markers and mitochondrial dysfunction in subcutaneous white adipose tissue (sWAT). Defective sWAT browning was concomitant with elevated levels of endoplasmic reticulum (ER) stress and autophagy. Consistently, TLR4 activation by LPS abolished cAMP-induced up-regulation of uncoupling protein 1 (UCP1) in primary human adipocytes, which was reversed by silencing of C/EBP homologous protein (CHOP). Moreover, the inactivation of ER stress by genetic deletion of CHOP or chemical chaperone conferred a resistance to the LPS-induced suppression of adaptive thermogenesis. Collectively, our data indicate the existence of a novel signaling network that links TLR4 activation, ER stress, and mitochondrial dysfunction, thereby antagonizing thermogenic activation of sWAT. Our results also suggest that TLR4/ER stress axis activation may be a responsible mechanism for obesity-mediated defective brown adipose tissue activation.  相似文献   

18.
Weight loss reduces energy expenditure, but it is unclear whether dietary macronutrient composition affects this reduction. We hypothesized that energy expenditure might be modulated by macronutrient composition of the diet. The Prevention of Obesity Using Novel Dietary Strategies (POUNDS) LOST study, a prospective, randomized controlled trial in 811 overweight/obese people who were randomized in a 2 × 2 design to diets containing 20en% or 40en% fat and 15en% or 25en% protein (diets with 65%, 55%, 45%, and 35% carbohydrate) provided the data to test this hypothesis. Resting energy expenditure (REE) was measured at baseline, 6, and 24 months using a ventilated hood. REE declined at 6 months by 99.5 ± 8.0 kcal/day in men and 55.2 ± 10.6 kcal/day in women during the first 6 months. This decline was related to the weight loss, and there was no difference between the diets. REE had returned to baseline by 24 months, but body weight was still 60% below baseline. Measured REE at 6 months was significantly lower than the predicted (?18.2 ± 6.7 kcal/day) and was the result of significant reductions from baseline in the low‐fat diets (65% or 55% carbohydrate), but not in the high fat diet groups. By 24 months the difference had reversed with measured REE being slightly but significantly higher than predicted (21.8 ± 10.1 kcal/day). In conclusion, we found that REE fell significantly after weight loss but was not related to diet composition. Adaptive thermogenesis was evident at 6 months, but not at 24 months.  相似文献   

19.
Food quality and availability play an important role in an animal's life history. The aim of this study was to examine the effect of diet quality [high-fiber diet (HF) or low-fiber diet (LF)] on energy budgets and thermogenesis in Brandt's voles (Lasiopodomys (Microtus) brandtii). Dry matter intake and gross energy intake increased and digestibility decreased in HF voles compared with LF voles, while the digestible energy intake was similar for both HF and LF voles. Nonshivering thermogenesis (NST) decreased in HF voles, while LF voles kept stable; no significant differences were detected in basal metabolic rate (BMR), BAT uncoupling protein 1 (UCP1) content and the levels of serum thyroid hormones (T3 and T4) between HF and LF voles. Although there were no differences in body fat content and serum leptin concentrations between HF and LF voles, serum leptin concentrations in HF voles were reduced to nearly half as those seen in LF voles after 4-weeks acclimation. These results support the hypothesis that Brandt's voles can compensate the poor quality diet physiologically by the means of increasing food intake and decreasing thermogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号