首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
随着关节韧带损伤发生率日益提高,人工材料植入重建韧带功能是重要治疗手段之一。植入后宿主细胞的趋向、黏附和迁移是人工材料在体内形成长期稳定生物连接的关键。以往研究集中于提高材料生物性,如增加材料亲水性、表面修饰、黏附适宜细胞以及复合细胞因子等,目前在张力环境下三维微孔结构对宿主细胞黏附、迁移、长入和分化影响的研究较少。本文拟以生物相容性良好的聚对苯二甲酸丁二醇酯(PET)材料作为载体,探讨在张力状态下新编PET的结构、孔径大小和孔隙率对细胞迁移等细胞生物学行为影响的研究现状和未来发展。为这些研究的深入指明方向,也为PET作为人工材料修复韧带损伤的临床应用奠定实验基础。  相似文献   

2.
目的:壳聚糖接枝改性的聚对苯二甲酸乙二醇酯(PET)纤维编织材料是一种具有良好组织相容性的新型生物材料,小鼠骨髓间充质干细胞(BMSC)为主要的人工韧带种子细胞.本研究通过建立一种可应用于生物材料上的细胞迁移模型,旨在观察BMSC在改性PET材料编织物上的迁移能力,探讨该材料作为人工韧带应用的可行性.方法:利用316L医用不锈钢自主设计制作细胞迁移模具,置于六孔板,在模具加样孔内接种小鼠BMSC,培养24h后撤出模具,分别继续培养48 h、72 h和96h;在证实模具可有效用于量化细胞迁移过程后,将不同线密度的PET材料编织物平铺于六孔板底,利用本模型观察BMSC在3000D组和5000D组经改性的PET材料编织物上的迁移能力,吉姆萨染色法计算不同时间点BMSC的迁移面积.结果:细胞接种24 h后撤出模具,可见六孔板底中央出现与模具底面大小相当的无细胞空白区,周围接种BMSC,随培养时间延长,BMSC逐渐由周围向中央区域迁移;在经改性的PET材料编织物上成功建立细胞迁移模型后,随培养时间增加,两组细胞迁移面积均逐渐增大,其中3000D组细胞迁移面积显著大于5000D组(P<0.05).结论:利用316L医用不锈钢模具建立的细胞迁移模型能够应用于平铺编织物引导细胞迁移的基础研究,本模型可作为传统模型无法观察人工材料对细胞迁移可能影响的良好补充;3000D经改性的PET材料编织物的线密度较5000D更有利于小鼠BMSC在材料上的迁移和生长.  相似文献   

3.
目的:探讨环氧乙烷、高压蒸汽、60Co照射三种消毒方法,对生物化PET人工韧带的生物力学影响,为选取合适的消毒灭菌方法提供实验依据。方法:以表面改性的聚对苯二甲酸乙二醇酯纤维为材料,制备生物化PET人工韧带,分别给予环氧乙烷熏蒸、高压蒸汽、60Co照射消毒处理,并设未作消毒处理的空白对照组,分别进行生物力学测试,对测量结果行统计学比较分析。结果:高压蒸汽消毒后,韧带所能承受的最大拉力及第一次破裂力降低,且与对照组间的差异均有统计学意义(P<0.05);60Co照射消毒后,韧带所能承受的最大拉力降低,与对照组间的差异有统计学意义(P<0.05),但第一次破裂力的差异不明显(P>0.05);环氧乙烷消毒处理后,最大拉力、第一次破裂力与对照组之间无明显差异(P>0.05);各组间断裂伸长率无明显差异(P>0.05)。结论:高压蒸汽消毒后韧带样品的生物力学性能降低比较明显;采用60Co射线消毒方法对产品的力学性能影响较小,但进一步的消毒方法改进可能更为理想;环氧乙烷消毒法可作为生物化PET人工韧带的有效消毒方法。  相似文献   

4.
目的:通过对聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)材料的编织和力学性能的分析,初步探讨使用该材料构建组织工程韧带支架的可行性。方法:将不同强度的PET单纤维通过经编法编织成支架材料;然后使用电子拉力机对编织好的支架材料以及消毒处理后的支架材料进行力学性能测试并进行分析。结果:PET编织构建的支架材料结构稳定,其极限抗张强度已达到了前交叉韧带的力学要求。辐照消毒对支架材料的力学性能无短期影响。结论:该支架材料编织结构设计合理,具有优良的力学性能,消毒后对其力学性能无短期影响,有望通过改进生物学性能后成为一种较理想的组织工程前交叉韧带支架材料。  相似文献   

5.
[目的]筛选和鉴定能够降解聚对苯二甲酸乙二醇酯(PET)单体的微生物,并分析代谢途径.[方法]从青岛小涧西固体废弃物综合处置厂采集样品,以PET单体对苯二甲酸为唯一碳源筛选获得能够代谢对苯二甲酸的菌株TPA3;16S rRNA序列分析确定TPA3菌株的分类地位;采用二代和三代高通量测序技术进行基因组de novo测序和...  相似文献   

6.
以甲基丙烯酸丁酯(BMA)为接枝单体,过氧化苯甲酰(BPO)为引发剂,采用固相接枝技术对聚丙烯(PP)进行改性,制备了BMA接枝PP(PP-g-BMA)。研究了接枝反应工艺条件对接枝率的影响,采用傅立叶变换红外光谱表征与分析了PP-g-BMA,并对PP-g-BMA在PP/聚对苯二甲酸乙二酯(PET)共混物中的增容作用进行了验证。结果表明,当反应温度为130℃、引发剂的质量分数为6%、单体BMA质量分数为10%,接枝反应3 h,成功制得了接枝率为3.75%PP-g-BMA;PP-g-BMA可明显改善PP/PET共混物的界面相容性,相对于PP-g-BMH,其增容的PP/PET共混物的力学性能和加工流变性能更好。  相似文献   

7.
【目的】大量聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)塑料作为废弃物被丢弃,严重危害生态健康。针对嗜热PET降解菌缺乏这一情况,本研究旨在获得能够降解PET的嗜热菌,并阐述其降解机制。【方法】采集云南腾冲热泉中的废弃PET瓶,分析其表面生物膜的微生物群落多样性,从中筛选能够以PET为营养源生长的嗜热菌,并基于16S rRNA基因序列加以鉴定;以菌株的定殖能力与生长曲线为指标,优选出降解能力较强的降解菌,并测定其最适pH、温度和NaCl浓度;降解能力较强的降解菌分别作用于PET及PET中间体双(羟乙基)对苯二甲酸酯[bis(hydroxyethyl)terephthalate,BHET]和对苯二甲酸单(2-羟乙基)酯[mono(2-hydroxyethyl)terephthalate,MHET],测定产物生成量与降解率;通过观察PET膜表面微观结构、活菌数、酯酶活性等探究降解菌与PET的互作过程。【结果】废弃PET瓶表面生物膜中的微生物群落多样性低;从生物膜中筛选出5株能够以PET为营养源生长的嗜热菌;其中,菌株JQ3以PET为唯一碳源生长最佳,作为降解能力较强的降解菌,被鉴定为嗜热淀粉芽孢杆菌(Bacillus thermoamylovorans),其最适生长pH为7.0、最适生长温度为50℃、最适生长NaCl浓度为0.5%;菌株JQ3以0.043 mg PET/d的速率降解PET,对苯二甲酸(terephthalic acid,TPA)产量在第7天达到峰值45.2 mmol/L;菌株JQ3对PET中间体降解效率显著,6 h可降解85.9%的BHET,60 h可降解50.1%的MHET。菌株JQ3能够定殖于PET表面并形成生物膜,侵蚀PET并造成开裂和剥落。【结论】B.thermoamylovorans JQ3作为一株嗜热PET降解菌,能够高温(60℃)降解PET及其中间体,为实现PET的有效降解提供了新策略。  相似文献   

8.
本研究进行了聚对苯二甲酸乙二醇酯(polyethyleneterephthalate,PET)降解菌株的分离、筛选和鉴定,以及降解机制的探究.用"分级筛选"策略,先利用塑料类似物对苯二酸二甲酯(diethyl terephthalate,DET)进行富集培养,在以PET颗粒为唯一营养源的无机盐固体培养基上进行涂布,从垃圾填埋场PET塑料样品中筛选获得具有降解PET颗粒能力的菌株JWG-G2.通过菌株形态观察、生理生化特性及16S rRNA序列分析,鉴定该菌株属于微杆菌属(Microbacterium sp.).菌株JWG-G2在pH 7.0、30℃时生长状态最佳.经菌株JWG-G2处理后,PET颗粒表面酯键特征官能团明显减少;PET颗粒失重率达到1%.菌株JWG-G2能够显著降解PET中间体对苯二酸单羟乙酯钠盐(monohydroxyethyl terephthalate,MHET)和对苯二甲酸双羟乙酯(bishydro-xyethyl terephthalate,BHET)多聚体,其降解率分别为4.5%和11.2%.菌株JWG-G2具有较好的PET颗粒及其中间体降解作用,为降解机制的深入研究提供一定理论基础.  相似文献   

9.
与石油基聚酯——聚(对苯二甲酸乙二醇酯)(PET)相比,生物基聚酯——聚(2,5-呋喃二甲酸乙二醇酯)(PEF)具有更优异的物理-力学性能,在高阻隔性包装材料、高性能纤维和工程塑料等领域具有广阔的应用前景。然而,PEF及其关键单体的合成技术仍存在很大的挑战,尚未实现工业化;同时,PEF结构-性能的研究也表明其性能上存在一些缺陷,需要进行改性,以促进PEF的加工和应用。本文中,笔者总结近年来PEF的合成技术、结构-性能和改性研究的进展,并展望PEF基聚酯新材料的发展趋势和前景。  相似文献   

10.
导读          下载免费PDF全文
《生物工程学报》2023,39(11):4331-4334
<正>本期主要围绕生物活性物的生物制造,环二肽、灯盏乙素、紫苏酸等天然化合物和17α-OH孕酮等甾体化合物的生物合成,特别是其中涉及到的P450酶的分子改造,以及多聚磷酸激酶再生ATP、D-甘露糖的生物合成、聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)的生物降解和肠道微生物资源库等文章进行导读。  相似文献   

11.
The grafting of poly(sodium styrene sulfonate) (pNaSS) onto ozone-treated poly(ethylene terephthalate) (PET) fabric surfaces was characterized by X-ray photoelectron spectroscopy and toluidine blue colorimetry. Significant amounts of pNaSS were grafted over the range of experimental conditions examined in this study (30-120 min of ozonation, reaction at 65 or 70 degrees C, and reaction times up to 240 min). Within these ranges the amount of grafted pNaSS increased with both ozonation time and reaction temperature. The amount of grafted pNaSS increased over the first 60 min of reaction, then remained relatively constant from 60 to 240 min. For the biological experiments pNaSS-grafted samples were prepared with 30 min of ozonation and 60 min of reaction at a grafting temperature of 70 degrees C. The ozonation time was limited to 30 min to minimize any possible degradation of the PET fabrics by the ozonation treatment. The pNaSS-grafted PET surface adsorbed a factor of 4 more compared to the nongrafted surfaces. The strength of fibroblast adhesion was an order of magnitude higher on pNaSS-grafted PET fabrics compared to that on nongrafted PET fabrics. This difference in the cell attachment was correlated to the cell spreading, which was better and more homogeneous on the grafted fibers compared to the nongrafted fibers. Fibroblasts adhered more strongly on surfaces precoated with normal human plasma compared to surfaces precoated with 10% fetal calf serum in Dulbecco's modified Eagle's medium.  相似文献   

12.
The adsorption behavior of chitosan on poly(ethylene terephthalate) (PET) model film surface was studied using the quartz crystal microbalance (QCM) technique. QCM with a dissipation unit (QCM-D) represents a very sensitive technique for adsorption studies at the solid/liquid interface in situ, with capability of detecting a submonolayer of adsorbate on the quartz crystal surface. Chitosan as well as PET were chosen for this study due to their promising biocompatible properties and numerous possibilities to be used in biomedical applications. As a first step, PET foils were activated by alkaline hydrolysis in order to increase their hydrophilicity. Model thin films were prepared from PET foils by the spin coating technique. The chemical composition of the obtained model PET films was analyzed using X-ray photoelectron spectroscopy (XPS) and their morphology was characterized by atomic force microscopy (AFM). Furthermore, the adsorption behavior of chitosan on these activated PET films and the influence of adsorption parameters (pH, ionic strength and chitosan solution concentration) were investigated in detail. Additionally, the surface chemistry and morphology of the PET films and the chitosan coated PET films were analyzed with XPS and AFM.  相似文献   

13.
Liao JD  Lin SP  Wu YT 《Biomacromolecules》2005,6(1):392-399
Polypropylene nonwoven fabric was surface-activated by high-density oxygen microwave plasma, followed by graft copolymerization with acrylic acid (AAc) and then coupling with chitosan molecules. The pAAc-grafted surface containing C=O in carboxylic acid exhibited a hydrophilic character capable of promoting water absorbency. A larger portion of minimum 85% deacetylated sites in chitosan molecules was then coupled with the grafted pAAc (around 149 microg.cm(-2)) by forming amide bonds at their interface. The covalently bonded chitosan was weighted around 44 microg.cm(-2). The smaller portion of the deacetylated sites demonstrated a distinctive structure as polycations, i.e., NH(3)(+), on the immobilized chitosan. The respective structures following sequential reactions were identified using Fourier transform infrared-attenuated total reflection and X-ray photoelectron spectroscopy with peaks deconvolution. The NH(3)(+) sites on the immobilized chitosan exhibited biofunctional in anticoagulation and in antibacterial property. Blood cells agglutination or agglomeration upon the chitosan-immobilized surface, in particular for red blood cells and platelets, resulted from hydrophilic effect derived from the grafted pAAc and the chitosan itself, and ionic attractions between polycations and blood cells. In addition, the agglutinated cells retained their original morphologies. It is therefore very promising to apply this durable chitosan-immobilized surface for making an antibacterial support, at the same time, for retaining blood cell affinity.  相似文献   

14.
Essential oils are known to possess antimicrobial and antioxidant activity while chitosan is a biocompatible polymer with antibacterial activity against a broad spectrum of bacteria. In this work, nanoparticles with both antioxidant and antibacterial properties were prepared by grafting eugenol and carvacrol (two components of essential oils) on chitosan nanoparticles. Aldehyde groups were first introduced in eugenol and carvacrol, and the grafting of these oils to chitosan nanoparticles was carried out via the Schiff base reaction. The surface concentration of the grafted essential oil components was determined by X‐ray photoelectron spectroscopy (XPS). The antioxidant activities of the carvacrol‐grafted chitosan nanoparticles (CHCA NPs) and the eugenol‐grafted chitosan nanoparticles (CHEU NPs) were assayed with diphenylpicrylhydrazyl (DPPH). Antibacterial assays were carried out with a representative gram‐negative bacterium, Escherichia coli (E. coli) and a gram‐positive bacterium, Staphylococcus aureus (S. aureus). The grafted eugenol and carvacrol conferred antioxidant activity to the chitosan nanoparticles, and the essential oil component‐grafted chitosan nanoparticles achieved an antibacterial activity equivalent to or better than that of the unmodified chitosan nanoparticles. Cytotoxicity assays using 3T3 mouse fibroblast showed that the cytotoxicity of CHEU NPs and CHCA NPs were significant lower than those of the pure essential oils. Biotechnol. Bioeng. 2009; 104: 30–39 © 2009 Wiley Periodicals, Inc.  相似文献   

15.
The purpose of this study is to develop a reliable method of functionalizing poly(ethylene terephthalate) with bioactive polymers to produce a "biointegrable" artificial anterior cruciate ligament. Radical graft polymerization of the sodium salt of styrene sulfonate (NaSS) onto poly(ethylene terephthalate) (PET) films was performed using the "grafting from" technique. Prior to the grafting, the surfaces of poly(ethylene terephthalate) films were activated by ozonation to generate peroxide and hydroperoxide reactive species on the PET film surfaces. The radical polymerization of NaSS was initiated by thermal decomposition of the hydroperoxides. The grafted PET surfaces were characterized by a toluidin blue colorimetric method, X-ray photoelectron spectroscopy, contact angle measurements, and atomic force microscopy. The influence of ozonation time, monomer concentration, and temperature on NaSS grafting ratios was examined. A total of 30 min of ozonation followed by grafting from a 15% NaSS solution at 70 degrees C for 90 min or more resulted in attachment of poly(NaSS) chains to the PET film surfaces.  相似文献   

16.
A natural polymer, chitosan, was modified to prepare an efficient flocculant using grafting method initiated by gamma ray in acid-water solution. A vinyl monomer, acrylamide, was used as the grafted monomer. The graft copolymer obtained was characterized using Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. Effects of acetic acid concentration, total irradiation dose, dose rate and monomer concentration on the grafting percentage were investigated. Flocculation experiment results demonstrated that the graft copolymer produced was significantly superior to chitosan and polyacrylamide (PAM).  相似文献   

17.
《IRBM》2022,43(3):210-216
ObjectivesTo improve the hydrophilicity of cyclic olefin copolymer, a simple and rapid method using two-stage with ultraviolet irradiation was developed in order to graft a bioactive polymer on the surface of these polymers.Materials and MethodsA bioactive polymer, poly(sodium styrene sulfonate) was grafting in two steps on the cyclic olefin copolymer surface. The process consists to activate the surface with ozone and grafting to under UV irradiation in presence of sodium styrene sulfonate. The presence of polymer on the surfaces was characterized by water contact angle, Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive spectroscopy and the quantity of polymer grafted was determined by a colorimetric method.ResultsFirst, the time of UV irradiation for the grafting was studied. The results showed that the maximum grafting rate is reached after 60 minutes of reaction. Second, the influence of the presence of additive on the grafting was investigated. The degree of grafting is significantly reduced compared to a sample without additive.ConclusionWe have developed a simple and fast method to graft a hydrophilic and bioactive polymer covalently to a COC surface.  相似文献   

18.
《IRBM》2008,29(1):7-12
The aim of this study was to evaluate the impact of different densities on MC3T3 cells attachment onto polyethylene terephthalate (PET) film surfaces. Biomimetic modifications were performed by means of a three-step reaction procedure: creation of COOH functions onto PET surface, coupling agent grafting and finally immobilization of peptides. The originality of this work consist, in one hand on quantifying RGD peptides densities grafted onto PET, and on the other hand on studying MC3T3 cells responses after seeding on such biomimetic surfaces. After each functionnalization step, modifications were validated by several physicochemical techniques: X-Ray Photoelectron Spectroscopy permitted to prove the grafting and high-resolution β-imager coupled with use of radiolabelled amino acids served in evaluation of peptides densities. Moreover, this last technique permit us to ensure stability of binding between peptides and polymer. The efficiency of this new route for biomimetic modification of PET surface was demonstrated by measuring the adhesion at 15 hours of osteoblast like cells. Study of cellular comportment was realized by means of focal contact proteins (vinculin, actin) immunostaining.  相似文献   

19.
Microfungi were selectively isolated for production of polyethylene terephthalate (PET) fiber-degrading enzymes potentially to be used to modify the surface of polyester fabric. A range of fungi were isolated from plant surfaces and soil samples using a polycaprolactone (PCL) plate-clearing assay technique, and screened for cutinolytic esterase (cutinase) activity. Twenty-two of 115 isolates showed clearing indicating the production of cutinase. The ability of the fungi to produce cutinase in mineral medium (MM) using either potato suberin or PET (1 cm of untreated pre-washed PET fiber) fiber as substrates was assessed based on the hydrolysis of p-nitrophenyl butyrate (p-NPB). All isolates exhibited activity towards p-NPB, isolate PBURU-B5 giving the highest activity with PET fiber as an inducer. PBURU-B5 was identified as Fusarium solani based on its conidial morphology and also nucleotide sequencing from internal transcribed spacer region of the ribosomal RNA gene (rDNA-ITS). Enzymatic modification of PET cloth material properties using crude enzyme from strain PBURU-B5 showed hydrolysis of ester bonds of the PET fiber. The modification of the PET fabric resulted in increase of water and moisture absorption, and general enhancement of hydrophilicity of the fabric, properties that could facilitate processing of fabric ranging from easier dyeing while also yielding a softer feeling fabric for the user.  相似文献   

20.
Chitosan fibres were grafted with flavonoids using tyrosinase to produce reactive o-quinones which subsequently react with primary amino groups of the chitosan. The reaction mechanism using chemically different flavonoids (flavanols, flavonols, flavone, flavanone, isoflavone) was followed by UV/vis spectroscopy and the successful grafting was demonstrated by ATR-IR spectroscopy, pH potentiometric titration and reflectance measurements. An increase of antioxidant activity of functionalized chitosan fibres using well established methods was found depending on the type of the flavonoid used. In addition, some flavonoids increased antimicrobial activity of chitosan against Bacillus subtillis and Pseudomonas aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号