首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In this study, we succeeded in differentiating Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum by means of recA gene sequence comparison. Short homologous regions of about 360 bp were amplified by PCR with degenerate consensus primers, sequenced, and analyzed, and 322 bp were considered for the inference of phylogenetic trees. Phylograms, obtained by parsimony, maximum likelihood, and analysis of data matrices with the neighbor-joining model, were coherent and clearly separated the three species. The validity of the recA gene and RecA protein as phylogenetic markers is discussed. Based on the same sequences, species-specific primers were designed, and a multiplex PCR protocol for the simultaneous distinction of these bacteria was optimized. The sizes of the amplicons were 318 bp for L. plantarum, 218 bp for L. pentosus, and 107 bp for L. paraplantarum. This strategy permitted the unambiguous identification of strains belonging to L. plantarum, L. pentosus, and L. paraplantarum in a single reaction, indicating its applicability to the speciation of isolates of the L. plantarum group.  相似文献   

2.
A rapid and reliable PCR-based method for distinguishing closely related species within two groups of lactobacilli is described. Primers complementary to species-specific sequences in the 16S/23S rDNA spacer regions were designed after sequencing and sequence comparison of the spacer regions of 32 strains. The strains belong to two groups of closely related Lactobacillus species; one composed of Lactobacillus curvatus, Lactobacillus graminis and Lactobacillus sake, the other of Lactobacillus paraplantarum, Lactobacillus pentosus and Lactobacillus plantarum. PCR assays with the designed primers and subsequent agarose gel analysis of the amplified fragments allowed the same species identification as the DNA/DNA hybridization procedure.  相似文献   

3.
A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies.  相似文献   

4.
The lactic acid bacteria (LAB) play an important role in the fermentation of vegetables to improve nutritive value, palatability, acceptability, microbial quality and shelf life of the fermented produce. The LAB associated with beetroot and carrot fermentation were identified and characterized using different molecular tools. Amplified ribosomal DNA restriction analysis (ARDRA) provided similar DNA profile for the 16 LAB strains isolated from beetroot and carrot fermentation while repetitive extragenic palindromic PCR (rep-PCR) genotyping could differentiate the LAB strains into eight genotypes. Thirteen strains represented by five genotypes could be clustered in five distinct groups while three LAB strains exhibiting distinct genotypes remained ungrouped. These genotypes could be identified to be belonging to L. plantarum group by 16S rDNA sequencing. The recAnested multiplex PCR employing species-specific primers for the L. plantarum group members identified the LAB strains of six genotypes to be L. paraplantarum and the other two genotypes to be L. pentosus. Three genotypes of L. paraplantarum were consistently found on the third and sixth day of beetroot fermentation whereas a distinct genotype of L. paraplantarum and L. pentosus appeared predominant on the tenth day. From carrot Kanji two distinct genotypes of L. paraplantarum and one genotype of L. pentosus were identified. REP-PCR DNA fingerprinting coupled with 16S rDNA sequencing and recA-nested multiplex PCR could clearly identify as well as differentiate the diverse L. plantarum group strains involved in the fermentation.  相似文献   

5.
Lactic acid bacteria require rich media since, due to mutations in their biosynthetic genes, they are unable to synthesize numerous amino acids and nucleobases. Arginine biosynthesis and pyrimidine biosynthesis have a common intermediate, carbamoyl phosphate (CP), whose synthesis requires CO2. We investigated the extent of genetic lesions in both the arginine biosynthesis and pyrimidine biosynthesis pathways in a collection of lactobacilli, including 150 strains of Lactobacillus plantarum, 32 strains of L. pentosus, 15 strains of L. paraplantarum, and 10 strains of L. casei. The distribution of prototroph and auxotroph phenotypes varied between species. All L. casei strains, no L. paraplantarum strains, two L. pentosus strains, and seven L. plantarum strains required arginine for growth. Arginine auxotrophs were more frequently found in L. plantarum isolated from milk products than in L. plantarum isolated from fermented plant products or humans; association with dairy products might favor arginine auxotrophy. In L. plantarum the argCJBDF genes were functional in most strains, and when they were inactive, only one gene was mutated in more than one-half of the arginine auxotrophs. Random mutation may have generated these auxotrophs since different arg genes were inactivated (there were single point mutations in three auxotrophs and nonrevertible genetic lesions in four auxotrophs). These data support the hypothesis that lactic acid bacteria evolve by progressively loosing unnecessary genes upon adaptation to specific habitats, with genome evolution towards cumulative DNA degeneration. Although auxotrophy for only uracil was found in one L. pentosus strain, a high CO2 requirement (HCR) for arginine and pyrimidine was common; it was found in 74 of 207 Lactobacillus strains tested. These HCR auxotrophs may have had their CP cellular pool-related genes altered or deregulated.  相似文献   

6.
7.
Aims of the study were to characterize two Lactobacillus plantarum-related strains, Lact. plantarum and Lactobacillus paraplantarum isolated from fermented vegetables and, for their potential use as starter strains, compare their growth in various food matrices. Species-level identification of the strains belonging to the Lact. plantarum group was performed by multiplex-PCR with species-specific primers and generation of distinct genotypic profiles was carried out by PFGE-based DNA-fingerprinting. Growth profiles were determined in various food and feed matrices. Compared to Lact. plantarum, Lact. paraplantarum reached higher cell densities in all plant-based matrices and MRS broth. On the contrary to the good growth in plant-based matrices and MRS, poor growth was observed in unprocessed milk. Supplemented lactose did not improve the growth of either tested strain, while predigestion of milk proteins with Lactobacillus helveticus or addition of casitone proved to be an effective means to enhance growth. To find out the applicability of molecular methods, the strains were transformed with replicative plasmids by electroporation. To our knowledge, this is a first report of the electrotransformation of Lact. paraplantarum with a recombinant plasmid.  相似文献   

8.
One hundred and fifty-six strains isolated from corn (Zea mays L.), forage paddy rice (Oryza sativa L.), sorghum (Sorghum bicolor L.) and alfalfa (Medicago sativa L.) silages prepared on dairy farms were screened, of which 110 isolates were considered to be lactic acid bacteria (LAB) according to their Gram-positive and catalase-negative characteristics and, mainly, the lactic acid metabolic products. These isolates were divided into eight groups (A-H) based on the following properties: morphological and biochemical characteristics, γ-aminobutyric acid production capacity, and 16S rRNA gene sequences. They were identified as Weissella cibaria (36.4%), Weissella confusa (9.1%), Leuconostoc citreum (5.3%), Leuconostoc lactis (4.9%), Leuconostoc pseudomesenteroides (8.0%), Lactococcus lactis subsp. lactis (4.5%), Lactobacillus paraplantarum (4.5%) and Lactobacillus plantarum (27.3%). W. cibaria and W. confusa were mainly present in corn silages, and L. plantarum was dominant on sorghum and forage paddy rice silages, while L. pseudomesenteroides, L. plantarum and L. paraplantarum were the dominant species in alfalfa silage. The corn, sorghum and forage paddy rice silages were well preserved with lower pH values and ammonia-N concentrations, but had higher lactic acid content, while the alfalfa silage had relatively poor quality with higher pH values and ammonia-N concentrations, and lower lactic acid content. The present study confirmed the diversity of LAB species inhabiting silages. It showed that the differing natural populations of LAB on these silages might influence fermentation quality. These results will enable future research on the relationship between LAB species and silage fermentation quality, and will enhance the screening of appropriate inoculants aimed at improving such quality.  相似文献   

9.
《FEMS microbiology letters》1997,154(2):377-383
The feasibility of intragenerically characterizing bifidobacteria by a comparison of a short region within the recA gene was tested. An ∼300 bp fragment of the recA gene was PCR-amplified from six species from the genus Bifidobacterium using primers directed to two universally conserved regions of the recA gene. A phylogenetic analysis of the sequenced recA products compared favorably to classification based on the 16S rRNA sequences of the species tested. To apply this rapid methodology to unknown human intestinal bifidobacteria, 46 isolates were randomly chosen from the feces of four subjects and initially characterized by RFLP analysis of a PCR-amplified region of their 16S RNA genes. From a representative of the dominant RFLP family in each of the subjects, the recA segment was PCR-amplified, sequenced and phylogenetically analyzed. All four isolates were found to be related to one another and to B. longum and B. infantis. These results illustrate that the recA gene may be useful for intrageneric phylogenetic analysis as well as for the identification of unknown fecal bifidobacteria.  相似文献   

10.
Two high-resolution genotypic techniques (RAPD-PCR and AFLP) were evaluated for their possibility to discriminate the species Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum and to type these taxa at the infra-species level. In total 23 strains of L. plantarum, three strains of L. pentosus, two strains of L. paraplantarum and two related strains for which the species assignment was not clear, were studied. For RAPD-PCR, suitable oligonucleotides and amplification conditions were selected and tested. For AFLP, a double digest of total genomic DNA was used and a subset of restriction fragments was selectively amplified and visualised using different primer combinations. Both methodologies generated, species-specific electrophoretic profiles. Moreover, the presence of distinct subgroups was revealed within the species L. plantarum.  相似文献   

11.
This study used SNaPshot minisequencing for species identification within the Lactobacillus plantarum group. A SNaPshot minisequencing assay using dnaK as a target gene was developed, and five SNP primers were designed by analysing the conserved regions of the dnaK sequences. The specificity of the minisequencing assay was evaluated using 35 strains of L. plantarum group species. The results showed that the SNaPshot minisequencing assay was able to unambiguously and simultaneously discriminate strains belonging to the species L. plantarum subsp. plantarum, L. plantarum subsp. argentoratensis, Lactobacillus paraplantarum, Lactobacillus pentosus and Lactobacillus fabifermentans. In conclusion, a rapid, accurate and cost-effective assay was successfully developed for species identification of the members of the L. plantarum group.  相似文献   

12.
Lactic acid bacteria require rich media since, due to mutations in their biosynthetic genes, they are unable to synthesize numerous amino acids and nucleobases. Arginine biosynthesis and pyrimidine biosynthesis have a common intermediate, carbamoyl phosphate (CP), whose synthesis requires CO(2). We investigated the extent of genetic lesions in both the arginine biosynthesis and pyrimidine biosynthesis pathways in a collection of lactobacilli, including 150 strains of Lactobacillus plantarum, 32 strains of L. pentosus, 15 strains of L. paraplantarum, and 10 strains of L. casei. The distribution of prototroph and auxotroph phenotypes varied between species. All L. casei strains, no L. paraplantarum strains, two L. pentosus strains, and seven L. plantarum strains required arginine for growth. Arginine auxotrophs were more frequently found in L. plantarum isolated from milk products than in L. plantarum isolated from fermented plant products or humans; association with dairy products might favor arginine auxotrophy. In L. plantarum the argCJBDF genes were functional in most strains, and when they were inactive, only one gene was mutated in more than one-half of the arginine auxotrophs. Random mutation may have generated these auxotrophs since different arg genes were inactivated (there were single point mutations in three auxotrophs and nonrevertible genetic lesions in four auxotrophs). These data support the hypothesis that lactic acid bacteria evolve by progressively loosing unnecessary genes upon adaptation to specific habitats, with genome evolution towards cumulative DNA degeneration. Although auxotrophy for only uracil was found in one L. pentosus strain, a high CO(2) requirement (HCR) for arginine and pyrimidine was common; it was found in 74 of 207 Lactobacillus strains tested. These HCR auxotrophs may have had their CP cellular pool-related genes altered or deregulated.  相似文献   

13.
DNA probe and PCR-specific reaction for Lactobacillus plantarum   总被引:1,自引:0,他引:1  
A 300 bp DNA fragment of Lactobacillus plantarum isolated by randomly amplified polymorphic DNA (RAPD) analysis was cloned and sequenced. This fragment was tested using a dot-blot DNA hybridization technique for its ability to identify Lact. plantarum strains. This probe hybridized with all Lact. plantarum strains tested and with some strains of Lact. pentosus , albeit more weakly. Two internal primers of this probe were selected (LbPl1 and LbPl2) and polymerase chain reaction (PCR) was carried out. All Lact. plantarum strains tested amplified a 250 bp fragment contrary to the other LAB species tested. This specific PCR for Lact. plantarum was also performed from colonies grown on MRS medium with similar results. These methods enabled the rapid and specific detection and identification of Lact. plantarum .  相似文献   

14.
Burkholderia is an important bacterial genus containing species of ecological, biotechnological, and pathogenic interest. With their taxonomy undergoing constant revision and the phenotypic similarity of several species, correct identification of Burkholderia is difficult. A genetic scheme based on the recA gene has greatly enhanced the identification of Burkholderia cepacia complex species. However, the PCR developed for the latter approach was limited by its specificity for the complex. By alignment of existing and novel Burkholderia recA sequences, we designed new PCR primers and evaluated their specificity by testing a representative panel of Burkholderia strains. PCR followed by restriction fragment length polymorphism analysis of an 869-bp portion of the Burkholderia recA gene was not sufficiently discriminatory. Nucleotide sequencing followed by phylogenetic analysis of this recA fragment differentiated both putative and known Burkholderia species and all members of the B. cepacia complex. In addition, it enabled the design of a Burkholderia genus-specific recA PCR that produced a 385-bp amplicon, the sequence of which was also able to discriminate all species examined. Phylogenetic analysis of 188 novel recA genes enabled clarification of the taxonomic position of several important Burkholderia strains and revealed the presence of four novel B. cepacia complex recA lineages. Although the recA phylogeny could not be used as a means to differentiate B. cepacia complex strains recovered from clinical infection versus the natural environment, it did facilitate the identification of clonal strain types of B. cepacia, B. stabilis, and B. ambifaria capable of residing in both niches.  相似文献   

15.
目的建立快速定量检测植物乳杆菌的方法,排除近缘菌的干扰。方法利用SMM系统筛选植物乳杆菌种特异序列,根据特异序列设计引物进行实时荧光定量PCR反应。结果设计的引物具有良好的种特异性,检测限为2.26×10^2CFU/mL。结论该方法快速灵敏,可以在实际生产中应用。  相似文献   

16.
The concentrations of γ-aminobutyric acid (GABA) in 22 Italian cheese varieties that differ in several technological traits markedly varied from 0.26 to 391 mg kg−1. Presumptive lactic acid bacteria were isolated from each cheese variety (total of 440 isolates) and screened for the capacity to synthesize GABA. Only 61 isolates showed this activity and were identified by partial sequencing of the 16S rRNA gene. Twelve species were found. Lactobacillus paracasei PF6, Lactobacillus delbrueckii subsp. bulgaricus PR1, Lactococcus lactis PU1, Lactobacillus plantarum C48, and Lactobacillus brevis PM17 were the best GABA-producing strains during fermentation of reconstituted skimmed milk. Except for L. plantarum C48, all these strains were isolated from cheeses with the highest concentrations of GABA. A core fragment of glutamate decarboxylase (GAD) DNA was isolated from L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48 by using primers based on two highly conserved regions of GAD. A PCR product of ca. 540 bp was found for all the strains. The amino acid sequences deduced from nucleotide sequence analysis showed 98, 99, 90, and 85% identity to GadB of L. plantarum WCFS1 for L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48, respectively. Except for L. lactis PU1, the three lactobacillus strains survived and synthesized GABA under simulated gastrointestinal conditions. The findings of this study provide a potential basis for exploiting selected cheese-related lactobacilli to develop health-promoting dairy products enriched in GABA.  相似文献   

17.
[目的] 本试验研究不同来源植物乳杆菌(Lactobacillus plantarum)基因特点以及在不同环境下其基因多样性,探究2株L.plantarum A8和P9在肠道生境及植物表面适应性的异同,为优良菌株的开发提供理论基础。[方法] 本研究对从动物肠道和植物表面分离获得的L.plantarum A8和L.plantarum P9的基因组进行分析,利用第二代测序技术(NextGeneration Sequencing,NGS),基于Illumina NovaSeq测序平台,同时利用第三代单分子测序技术,基于PacBio Sequel测序平台,对L.plantarum A8和L.plantarum P9进行测序。采用Carbohydrate-active enzymes(CAZy)、Koyto encyclopedia of genes and genomes(KEGG)和Clusters of orthologous genes(COG)数据库对基因组进行功能注释;采用CGView软件绘制菌株的基因组环形图谱。应用比较基因组学与已经公开发表的其他L.plantarum基因组进行比较分析。[结果] 由研究可知L.plantarum A8和L.plantarum P9基因组大小存在差异,通过构建系统发育树发现2株菌与其他来源的L.plantarum分在同一分支,并且L.plantarum P9与母乳来源的L.plantarum WLPL04菌株距离最近,而L.plantarum A8与L.paraplantarum DSM10667距离最近。通过基因家族分析可知,2株菌共有基因为2643个,其中包括一些抗应激蛋白如热休克蛋白、冷休克蛋白。L.plantarum A8和P9独特基因分别为321和336个,L.plantarum A8中独特基因主要参与DNA复制、ABC转运系统(ABC transfer system)、PTS系统(phosphotransferase system)、磺酸盐转运系统、氨基酸生物合成等代谢通路;L.plantarum P9的独特基因以参与碳水化合物的运输和代谢基因居多,例如rpiA基因、lacZ基因、FruA基因等。[结论] 通过比较基因组学方法解析L.plantarum的基因组信息,发现动物肠道来源的L.plantarum具有较好的氨基酸转运能力,植物表面附着的L.plantarum菌株具有较好碳水化合物利用能力,从而为益生菌的开发与利用提供理论依据。  相似文献   

18.
The aim of this article was to analyze the ability of wine Lactobacillus plantarum strains to form tyramine. Preliminary identification of L. plantarum strains was performed by amplification of the recA gene. Primers pREV and PlanF, ParaF and PentF were used respectively as reverse and forward primers in the polymerase chain reaction tests as previously reported. Furthermore, the gene encoding for the tyrosine decarboxylase (TDC) was partially cloned from one strain identified as L. plantarum. The strain was further analyzed by 16S rDNA sequence and confirmed as belonging to L. plantarum species. The tyrosine decarboxylase activity was investigated and tyramine was determined by the high-performance liquid chromatography method. Moreover, a negative effect of sugars such as glucose and fructose and L-malic acid on tyrosine decarboxylase activity was observed. The results suggest that, occasionally, L. plantarum is able to produce tyramine in wine and this ability is apparently confined only to L. plantarum strains harboring the tdc gene.  相似文献   

19.
Lactobacilli with tannase activity were isolated from human feces and fermented foods. A PCR-based taxonomic assay revealed that the isolates belong to Lactobacillus plantarum, L. paraplantarum, and L. pentosus. Additional studies on a range of Lactobacillus species from established culture collections confirmed that this enzymatic activity is a phenotypic property common to these three species.  相似文献   

20.
Fermentation of capers (the fruits of Capparis sp.) was studied by molecular and culture-independent methods. A lactic acid fermentation occurred following immersion of caper berries in water, resulting in fast acidification and development of the organoleptic properties typical of this fermented food. A collection of 133 isolates obtained at different times of fermentation was reduced to 75 after randomly amplified polymorphic DNA (RAPD)-PCR analysis. Isolates were identified by PCR or 16S rRNA gene sequencing as Lactobacillus plantarum (37 isolates), Lactobacillus paraplantarum (1 isolate), Lactobacillus pentosus (5 isolates), Lactobacillus brevis (9 isolates), Lactobacillus fermentum (6 isolates), Pediococcus pentosaceus (14 isolates), Pediococcus acidilactici (1 isolate), and Enterococcus faecium (2 isolates). Cluster analysis of RAPD-PCR patterns revealed a high degree of diversity among lactobacilli (with four major groups and five subgroups), while pediococci clustered in two closely related groups. A culture-independent analysis of fermentation samples by temporal temperature gradient electrophoresis (TTGE) also indicated that L. plantarum is the predominant species in this fermentation, in agreement with culture-dependent results. The distribution of L. brevis and L. fermentum in samples was also determined by TTGE, but identification of Pediococcus at the species level was not possible. TTGE also allowed a more precise estimation of the distribution of E. faecium, and the detection of Enterococcus casseliflavus (which was not revealed by the culture-dependent analysis). Results from this study indicate that complementary data from molecular and culture-dependent analysis provide a more accurate determination of the microbial community dynamics during caper fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号