首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
范桂枝  蔡庆生 《植物学报》2005,22(4):486-493
光合作用对大气中CO2浓度升高适应的可能原因主要表现在以下几个方面: 由于CO2浓度升高,碳水化合物过量积累, 光合电子传递链中质体醌与过氧化氢(H2O2)的氧化还原信号对光合作用发生反馈抑制; 核酮糖1,5-二磷酸羧化/加氧酶(Rubisco)的含量及其活性下降; 气孔状态发生变化。此外, 植物体内C/N平衡、生长调节物质和己糖激酶对光合基因表达水平的调控等多个方面会对光合适应产生影响。  相似文献   

2.
植物对大气CO2浓度升高的光合适应机理   总被引:11,自引:2,他引:9  
光合作用对大气中CO2浓度升高适应的可能原因主要表现在以下几个方面:由于CO2浓度升高,碳水化合物过量积累,光合电子传递链中质体醌与过氧化氢(H2O2)的氧化还原信号对光合作用发生反馈抑制;核酮糖1,5-二磷酸羧化/加氧酶(Rubisco)的含量及其活性下降;气孔状态发生变化.此外,植物体内C/N平衡、生长调节物质和己糖激酶对光合基因表达水平的调控等多个方面会对光合适应产生影响.  相似文献   

3.
水杨酸(SA)和硫化氢(H2S)在调控非生物胁迫下植物生长发育和生理代谢中均起着非常重要的作用,但二者作为信号分子在调控低温弱光下黄瓜光合作用中的互作关系还不清楚。本试验以黄瓜幼苗为试材,分别用SA和硫氢化钠(NaHS,H2S供体)及其清除剂或抑制剂喷撒叶面,以适宜温光下去离子水处理为对照(CK),研究低温(8 ℃/5 ℃,昼/夜)弱光(100 μmol·m-2·s-1)下SA和H2S对黄瓜幼苗光合作用的调控及互作关系。结果表明: SA可明显增强L-/D-半胱氨酸脱巯基酶(LCD、DCD)活性及其mRNA表达,促进内源H2S产生;NaHS对苯丙氨酸解氨酶和异分支酸合成酶活性、mRNA表达量及内源SA含量影响不大。SA和NaHS可使低温弱光下黄瓜幼苗的光合速率、气孔导度和蒸腾速率明显提高,胞间CO2浓度显著降低;同时增强核酮糖-1,5-二磷酸羧化酶、Rubisco活化酶、景天庚酮糖-1,7-二磷酸酯酶和果糖-1,6-二磷酸醛缩酶活性及其mRNA表达,促进光合碳同化;提高光下PSⅡ实际光化学效率和暗下PSⅡ最大光化学效率,从而减轻低温弱光胁迫对黄瓜幼苗的光合机构的损伤和生长量的影响。H2S清除剂次牛磺酸(HT)可使SA对低温弱光下黄瓜幼苗的光合作用和生长促进效应明显减弱,而SA抑制剂多效唑和氨基茚磷酸对H2S诱导的黄瓜幼苗光合机构对低温弱光的耐受性无显著影响,说明H2S作为SA的下游信号,参与调控低温弱光下黄瓜幼苗的光合作用。  相似文献   

4.
为了探明外源水杨酸(SA)和2,4-表油菜素内酯(EBR)对低温胁迫下黄瓜幼苗光合作用的调控机理,以‘优博1-5’黄瓜为试材,用1 mmol·L-1SA和0.1 μmol·L-1EBR喷施预处理幼苗,每天喷1次,连喷2 d后置于低温下[10 ℃/5 ℃,光强(PFD)80 μmol·m-2·s-1]处理.结果表明: 低温胁迫下黄瓜幼苗生长量及净光合速率(Pn)下降;喷施SA和BER显著提高了Pn、光系统Ⅱ最大光化学效率(Fv/Fm)、光系统Ⅱ实际光化学效率(ΦPS)和光化学猝灭系数(qP),减缓了非光化学猝灭系数(NPQ)增加的幅度,同时核酮糖-1,5-二磷酸羧化/加氧酶(Rubisco)、景天庚酮糖-1,7-二磷酸酯酶(SBPase)、转酮醇酶(TK)和果糖-1,6-二磷酸醛缩酶(FBA)活性明显升高.说明SA和EBR可以通过调节光合关键酶的活性,缓解低温对黄瓜幼苗光合作用的影响,增强其对低温的适应性.  相似文献   

5.
亚适温弱光对黄瓜幼苗光合酶活性和基因表达的影响   总被引:2,自引:1,他引:1  
Bi HG  Wang ML  Jiang ZS  Dong XB  Ai XZ 《应用生态学报》2011,22(11):2894-2900
以‘津优3号’为试材,研究亚适温弱光(18℃/12℃,100 μmol·m-2·s-1)下黄瓜幼苗叶片核酮糖-1,5-二磷酸羧化/加氧酶(Rubisco)、果糖-1,6-二磷酸酶(FBPase)、甘油醛-3-磷酸脱氢酶(GAPDH)、果糖-1,6-二磷酸醛缩酶(FBA)、转酮醇酶(TK) mRNA表达量及活性的变化.结果表明:亚适温弱光处理的单株叶面积和干物质量均明显减小.处理初期,Rubisco大亚基(rbcL)、小亚基(rbcS)、FBPase、GAPDH、FBA及TK的基因表达量大幅度下降,多数酶活性明显减弱(TK变化不明显),光合速率(Pn)快速降低;处理3d后,亚适温弱光处理的rbcL、rbcS基因表达量和Rubisco初始活性持续下降,但下降幅度明显减小,Rubisco总活性及FBPase、GAPDH、FBA和TK基因表达与活性均呈上升趋势,Pn同步回升;处理时间超过6d时,Rubisco和FBPase基因表达与活性趋于平稳,其他酶和Pn呈下降趋势.可见,亚适温弱光下黄瓜光合酶基因表达量和活性的降低是Pn降低的重要原因,光合机构对亚适温弱光的适应与光合酶的活化机制有关.  相似文献   

6.
CsRCA超表达黄瓜株系T1-7、T1-2和野生型‘08-1’为试材,在三叶一心时用光照培养箱模拟高温环境[40 ℃,光量子通量密度(PFD) 600 μmol·m-2·s-1],研究了CsRCA超表达对高温胁迫下黄瓜幼苗光合作用的调控机理.结果表明: CsRCA超表达可显著提高转基因黄瓜幼苗核酮糖-1,5-二磷酸羧化/加氧酶(Rubisco)大、小亚基的mRNA 表达量,Rubisco和Rubisco活化酶(RCA)活性亦显著高于野生型植株.高温胁迫2 h后,超表达和野生型黄瓜幼苗的光合速率(Pn)、以吸收光能为基础的光化学性能指数(PIABS)、Rubisco活性和RCA活性及其mRNA表达量均显著降低.经JIP-test分析发现,高温胁迫导致叶绿素荧光快速诱导动力学曲线中K点明显上升, 而捕获的激子将电子传递到电子传递链中QA下游的其他电子受体的概率(Ψo)和用于电子传递的产额(φE0)均显著下降,说明PSⅡ放氧复合体(OEC)和QA之后的电子传递链在高温下受到抑制,但是超表达植株的变化幅度要小于野生型植株.可见CsRCA超表达可以通过提高Rubisco、RCA和PSⅡ活性,缓解高温对黄瓜幼苗光合作用的影响,增强其对高温的适应性.  相似文献   

7.
碳酸氢钾对大豆幼苗光合作用的影响   总被引:1,自引:0,他引:1  
研究喷洒碳酸氢钾(KHCO3)对大豆幼苗叶片光合作用影响的结果表明,喷施KHCO3的大豆幼苗光合速率和核酮糖.1,5二磷酸羧化/氧化酶(Rubisco)羧化活性提高,加氧酶活性下降,PSI、PSII和光合电子传递速率均提高,光合色素含量也增加.  相似文献   

8.
以CsRCA超表达黄瓜株系T1-7、T1-2和野生型‘08-1’为试材,在三叶一心时用光照培养箱模拟高温环境[40℃,光量子通量密度(PFD)600μmol·m~(-2)·s~(-1)],研究了CsRCA超表达对高温胁迫下黄瓜幼苗光合作用的调控机理.结果表明:CsRCA超表达可显著提高转基因黄瓜幼苗核酮糖-1,5-二磷酸羧化/加氧酶(Rubisco)大、小亚基的mRNA表达量,Rubisco和Rubisco活化酶(RCA)活性亦显著高于野生型植株.高温胁迫2 h后,超表达和野生型黄瓜幼苗的光合速率(P_n)、以吸收光能为基础的光化学性能指数(PIABS)、Rubisco活性和RCA活性及其mRNA表达量均显著降低.经JIP-test分析发现,高温胁迫导致叶绿素荧光快速诱导动力学曲线中K点明显上升,而捕获的激子将电子传递到电子传递链中Q_A下游的其他电子受体的概率(Ψ_o)和用于电子传递的产额(φ_(E0))均显著下降,说明PSⅡ放氧复合体(OEC)和Q_A之后的电子传递链在高温下受到抑制,但是超表达植株的变化幅度要小于野生型植株.可见CsRCA超表达可以通过提高Rubisco、RCA和PSⅡ活性,缓解高温对黄瓜幼苗光合作用的影响,增强其对高温的适应性.  相似文献   

9.
本实验研究了黄瓜叶片展开过程中,光系统I(PSI)、光系统II(PSII)核心蛋白Psa A和D1以及卡尔文循环关键酶核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)的表达和PSI、PSII及卡尔文循环的发育速度快慢以及它们与光合速率的关系。PSI、PSII的活性、羧化效率(CE)和光合作用核心蛋白的表达量都随着叶片的展开而逐渐升高,但是幼叶中PSII活性的完善要显著早于PSI活性的完善,表现为与成熟叶相比,幼叶的PSII活性F_m-F_o、PSII最大光化学效率F_v/F_m、单位叶片截面积PSII有活性反应中心数目RC/CS_o等均大于幼叶的PSI最大氧化还原活性ΔI/I_o;PSII核心蛋白D1的相对表达量也显著高于PSI核心蛋白Psa A的相对表达量。此外,虽然在幼叶中,卡尔文循环关键酶Rubisco的相对表达量高于PSI和PSII核心蛋白的相对表达量,但是幼叶的CE却很低,这说明光合作用核心蛋白的表达量与光合机构的活性并不成正比关系。综合分析表明,幼叶较低的CE是幼叶发育过程中光合作用的主要限制因素。  相似文献   

10.
古细菌Rubisco的研究进展   总被引:1,自引:0,他引:1  
1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)是CO2固定的关键酶,决定光合作用的净效率。近年来,研究人员在古细菌中发现了新类型的Rubisco,综述了近年来有关古细菌Rubisco的一些研究进展,包括Rubisco的结构、基因与功能、基本性质、酶的定点突变及其活化等。  相似文献   

11.
为揭示毛竹(Phyllostachysedulis)快速生长期茎秆中的光合碳同化特征及其在不同节间的变化规律,以毛竹笋竹茎秆为材料,测定不同节间光合色素含量、核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)、磷酸烯醇式丙酮酸羧化酶(PEPC)、苹果酸脱氢酶(NADP-MDH)、NADP-苹果酸酶(NADP-ME)、磷酸烯醇式丙酮酸羧激酶(PEPCK)以及丙酮酸磷酸双激酶(PPDK)活性。结果显示,茎秆中叶绿素a、叶绿素b以及类胡萝卜素含量随节间升高均呈下降趋势,叶绿素a/b比值呈逐渐上升趋势;随着节间的升高,茎秆中Rubisco、PEPC和PPDK活性在第1–10节间显著下降,之后酶活性降幅逐渐减缓;NADP-ME活性在第1–13节间呈显著下降趋势,之后酶活性趋于平稳;NADP-MDH活性在第1–25节间显著下降。PEPC/Rubisco活性比值随节间升高而不断增加,其范围介于18.37–65.09之间,明显大于典型C3植物中的活性比值。上述结果表明,茎秆不同节间的光合碳同化能力存在明显差异,中、下部节间生长相对较快;茎秆中存在多种C4酶且活性较高,这为此时期茎秆中存在C4光合途径提供了有力证据。  相似文献   

12.
为探讨外源H2S对盐碱胁迫下植物光合碳代谢的调控效应,采用盆栽土培实验,以裸燕麦(Avenanuda)为材料,研究喷施50μmol·L-1 H2S供体硫氢化钠(Na HS)溶液对3.00 g·kg–1盐碱胁迫下叶片光合和荧光参数,单糖、寡糖和淀粉含量,卡尔文循环和糖代谢关键酶活性及产量构成因素的影响。结果表明:(1)盐碱胁迫下喷施Na HS显著降低裸燕麦叶片叶绿素含量、胞间CO2浓度、光系统Ⅱ(PSⅡ)初始荧光、最大荧光、调节性能量耗散量子产量、光化学荧光淬灭和非光化学淬灭,显著提高Hill反应活力、净光合速率、蒸腾速率、气孔导度、表观CO2利用效率、PSⅡ最大光化学效率和核酮糖1,5-二磷酸羧化酶(Rubisco)、Rubisco活化酶、3-磷酸甘油醛脱氢酶和转酮醇酶活性。说明外源H2S通过减少光能吸收和降低PSⅡ天线色素吸收光能用于光化学电子传递份额、提高原初光能转化效率和促进水的光解、调控卡尔文循环关键酶活性和增强CO2利用效率缓解盐碱胁迫诱导的光抑...  相似文献   

13.
采用批次培养的方法,研究了100、200和300 nmol/LC10-HSL(N-癸酰-L-高丝氨酸内酯)对普通海水小球藻(Chlorella vulgaris)PSⅡ光化学活性与光合作用关键酶的影响。结果显示:在C10-HSL作用下,小球藻生长受到促进,细胞密度显著升高,而且存在着随C10-HSL浓度上升促进作用增强的剂量-效应关系;小球藻PSⅡ光化学活性指标——最大光能转化效率Fv/Fm、实际光能转化效率Yeild及表观光合电子传递效率ETR明显提高,而且C10-HSL对Yeild的作用强于对Fv/Fm的影响;小球藻光合作用关键限速酶——核酮糖-1,5-二磷酸羧化酶/加氧酶Rubisco、磷酸丙糖异构酶TPI、焦磷酸:果糖-6-磷酸-1-磷酸转移酶PFP、果糖-1,6-二磷酸醛缩酶FDA活性均不同程度上升,表明小球藻光合固碳及合成糖类的能力有所增强。  相似文献   

14.
木本植物对高氮沉降的生理生态响应   总被引:5,自引:0,他引:5  
从4个方面综述了木本植物对氮沉降增加的生理生态响应研究进展。(1)氮沉降增加引起木本植物组织氮浓度增加,从而改变其体内的氮代谢:(2)氮沉降影响植物的光合作用速率及与光合作用相关的含氮组分,一定范围内氮沉降会增加光合速率、光合色素和Rubisco含量:(3)氮沉降增加将导致植物的呼吸作用增强:(4)氮沉降增加不利于植物的抗逆性,导致植物的抗寒力和抗病虫害的能力下降。  相似文献   

15.
光合CO_2的固定受二磷酸核酮糖羧化酶加氧酶(Rubis CO)活性的调节,而RubisCO的活性又决定于该酶活化形式酶~(-A)CO_2-Mg~(2 )-二磷酸核酮糖(E-~ACO_2-Mg~(2 )-RuBP)复合物的数量,羧基阿拉伯糖醇-1,5-二磷酸(CABP)是RuBP强有力的竞争  相似文献   

16.
两个品种烟草叶片发育过程中几种光合参数变化的比较   总被引:3,自引:0,他引:3  
比较烟草2个品种‘NC89’和‘JYH’叶片发育过程中几个光合参数变化的结果表明,烟草叶片发育过程中光合速率变化表现为上升期、高值持续期(APD)和速降期,叶绿素含量变化经历上升期、相对稳定期(RSP)和速降期。光合功能衰退过程中,核酮糖.1,5-二磷酸羧化酶(RuBPCase)活性比电子传递活性下降快。可逆衰退阶段的2个品种类囊体膜多肽组分和‘NC89’的核酮糖-1,5-二磷酸羧化酶加氧酶(Rubisco)大亚基基本上无变化;不可逆衰退阶段的2个品种类囊体膜多肽组分、Rubisco大小亚基均快速降解,尤其是光系统Ⅱ(PSⅡ)复合体和Rubisco小亚基。‘JYH’的叶龄为10-40d的叶中各光合参数与‘NC89’的差别不大,但‘JYH’的光合功能期短,光合功能衰退过程中光合电子传递与碳同化失衡较严重,光合功能衰退比‘NC89’早而迅速。  相似文献   

17.
针对CO2阶跃变化下光合动态响应的振荡现象,依据经典的光合系统酶触反应动力学,初步尝试构建了光合系统反馈控制动态生化模型。该模型以卡尔文环的核酮糖-1,5-二磷酸羧化/加氧酶(ribulose-1,5-bisphosphate carboxylase/oxygenase,Rubisco)接触反应的酶动力学进程作为核心,以磷酸甘油酸(phosphorylglyceric acid,PGA)还原和接续的核酮糖-1,5-二磷酸(ribulose-1,5-bisphosphate,RuBP)再生的多级过程高度简化为复合酶接触反应的酶动力学进程为反馈,构成反馈控制系统。采用经典的控制系统传递函数分析手段,将反馈控制系统表达为光合动态生化模型传递函数。据此模型将实测羧化速率Vc振荡动态进行仿真拟合,呈现出很高的拟合度(r=0.9377)。这表明,在卡尔文环或者光合系统反馈环中,因RuBP的消耗和再生补充不平衡引起的光合振荡现象,与光合系统酶接触反应动力学参数(k)造成各个中间产物再生的"滞后"效应有关。从而在机理上解释了Laisk和Walker(1986)的无机磷(inorganic phosphate,Pi)再生供应的光合动态生化模型中,需要假定代谢途径中蔗糖合成"滞后15~20s"才能表现出光合振荡效果的现象。  相似文献   

18.
大气氮沉降增加生态系统氮有效性,优势种植物对不同水平氮输入的响应影响草原生态系统结构和功能。研究设置4个氮添加水平,分析内蒙古温带草原优势种大针茅(Stipa grandis)光合生理特性对不同梯度氮添加的响应。结果表明:低氮(0-2 g m-2 a-1)处理时,大针茅叶片氮含量较低,叶绿素含量和1,5-二磷酸核酮糖羧化/加氧酶的活性不高,光能利用效率低,导致光系统II出现过剩激发能,光合器官受到抑制,净光合速率相对较低。适量氮添加(5-10 g m-2 a-1)提高了大针茅叶片羧化系统和电子传递系统的氮分配,进而提高了1,5-二磷酸核酮糖羧化/加氧酶的活性以及电子传递速率,净光合速率增大。高氮(25 g m-2 a-1)处理时,叶片氮含量较高,但光合氮分配比例下降,降低了光合氮利用效率。大针茅光抑制程度增大,叶绿素含量、1,5-二磷酸核酮糖羧化/加氧酶的活性下降,不利于生物量积累。研究结果有助于进一步了解全球变化背景下草原生态系统优势种的生理响应机制,并为草原的可持续发展提供一定的理论依据。  相似文献   

19.
吴新军  黄良民  苏强 《生态科学》2014,33(1):166-172
1, 5 -二磷酸核酮糖羧化酶/加氧酶(Rubisco 酶)广泛存在于植物及一些微生物体内, 是植物中含量最高的可溶性蛋白。Rubisco 酶不仅可以调节浮游植物的光合作用和光呼吸作用, 同时也是还原戊糖磷酸循环的关键酶。生态学上Rubisco 的研究热点主要集中在其对重要环境变化如臭氧层空洞、海水酸化、海水富营养化等的响应机制, 预测该酶对未来环境变化的适应能力。该文综述了近年来浮游植物Rubisco 酶功能和分类方面的研究进展, 以及主要营养因素、其他环境因素和两种因素共同作用对其活性和表达的影响机理, 以期为相关领域的深入研究提供基础资料。  相似文献   

20.
为探究氮(N)沉降和凋落物输入量改变对凋落叶分解的影响,该研究于2014年6月至2019年6月,以华西雨屏区处于N饱和状态的常绿阔叶林为研究对象,设置N添加和凋落物处理双因素实验,其中N添加处理分别为对照(CK, 0 kg·hm–2·a–1)、低N(LN,50kg·hm–2·a–1)和高N(HN,150kg·hm–2·a–1),凋落物处理分别为凋落物输入量不变(L0,不改变凋落物输入),减少(L-,减少50%)以及增加(L+,增加50%)。结果表明:6年N添加处理对该森林生态系统地上凋落物产量影响不显著; N添加处理显著抑制凋落叶分解,且N添加量越高,凋落叶分解抑制作用越强;N添加显著降低分解后期凋落叶中锰(Mn)的残留率,促进Mn的释放;凋落物输入量的增减处理未显著改变凋落叶分解速率,而凋落物增减处理升高了凋落叶中Mn的残留率,减缓Mn的释放; N添加和凋落物处理交互作用不显著。该研究表明亚热带N饱和常绿阔叶林凋落叶分解受N沉降的直接影响显著,凋落物处理...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号