首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
利用免疫组化、聚合酶链反应(PCR)、单链构象多态性(SSCP)分析等方法, 对49例同一标本宫颈癌组织中p53蛋白、P53外显子7~8变异、HPV6、11、16、18-DNA进行检测,以探讨它们在宫颈癌形成中的作用、相互关系和临床意义.结果表明: a.P53基因外显子7~8突变率14.29%、p53蛋白阳性率48.98%、HPV-DNA阳性率87.76%.b.P53基因突变不一定伴有p53蛋白阳性,但P53基因突变而p53蛋白阴性的标本必是HPV-DNA阳性;91.67%的p53蛋白阳性标本具有HPV-DNA阳性.c.HPV16-DNA阳性率显著高于HPV6、11、18-DNA阳性率.证明:宫颈癌的发生主要与HPV16感染有关,其次是P53基因突变所致;p53蛋白阳性由HPV感染和/或P53基因突变所致.  相似文献   

2.
含PR启动子的原核高效表达载体的构建及应用   总被引:2,自引:0,他引:2  
组建了一个仅含PR启动子的原核高效表达载体pRC,它同时含有cⅠ调控基因、多酶切位点和两个强的转录终止序列.现已成功地用于表达重组人肿瘤坏死因子-α(hTNF-α)、重组人白细胞介素-3(hIL-3)和抗溶菌酶(HEL)抗体Fd基因,表达量均占菌体总蛋白的36%以上.同时还研究了不同的宿主菌和原核增强子序列等因素对PR启动子载体表达的影响.此外,还比较了分别以PR、PL或PRPL作为启动子时表达hTNF-α的情况,结果表明,单用PR或PL启动子可获得与使用PRPL串联启动子一样的高效表达.  相似文献   

3.
以小球藻病毒腺嘌呤甲基转移酶基因(amt)和主要外壳蛋白VP54基因的5′上游调控序列构建大肠杆菌和真核藻转化载体。以PRPL及CaMV35S启动子为阳性对照,研究了小球藻病毒来源的两种调控序列在E.coli和真核藻细胞中的启动活性。发现PAMT在4种E.coli菌株中都具有极强的调控活性,启动Luc基因表达而产生的酶活性高于PRPL 50~400倍;PVP54在DH5α中也具有较强的启动活性。同时PAMT在两种小球藻中启动GUS基因瞬时表达的能力也明显高于CaMV35S启动子,表明它们有可能在真核藻类遗传转化中具有很好的应用前景。  相似文献   

4.
基因工程鱼生长激素的生产研究   总被引:5,自引:0,他引:5  
以PRPL,Trp启动子在大肠杆菌中表达鲤鱼生长激素重组DNA,经过高密度发酵.包涵体的提取,恢复天然结构。每升发酵可碍2g鱼生长激素。在上海地区以浸渍方法处理对虾苗并在人工饲料中添加鱼生长激素,提高虾苗的存活率并增加产量,提高了饲料的转化率。  相似文献   

5.
中国人γ-干扰素cDNA在大肠杆菌中的高效表达   总被引:5,自引:0,他引:5  
应用RT-PCR技术从中国人淋巴细胞mRNA反转录产物中克隆了IFN-γcDNA,序列分析证实了分子进化规律对IFN-γcDNA序列存在多态性的推论.在此基础上应用DNA重组技术,将去信号肽中国人IFN-γcDNA克隆到原核表达质粒pBV220 PRPL启动子下游,转化大肠杆菌DH5α,通过温度诱导表达,成功地在大肠杆菌中稳定、高效地表达了中国人IFN-γcDNA,其表达水平占全菌可溶性总蛋白的44.4%,初步复性后生物学活性测定结果表明γ-IFN表达量为0.45×107~2.34×107单位/L.  相似文献   

6.
肉桂地链霉菌(S.cinnamonensis)是莫能菌素(Monensin)的产生菌。大肠杆菌链霉菌穿梭表达载体pHZ1252中的透明颤菌血红蛋白基因(vhb)位于硫链丝菌素诱导启动子PtipA之下,它在肉桂地链霉菌中的结构不稳定,发生了重组缺失,缺失的片段包括大肠杆菌质粒部分和vhb基因。但来自阿维链霉菌(S.avermitilis)中缺失了大肠杆菌质粒部分却保留了完整的vhb基因及tipA启动子的pHZ1252,可在肉桂地链霉菌中稳定复制,不再发生缺失,经硫链丝菌素诱导表达出了有生物活性的VHb蛋白。摇瓶发酵实验证明,VHb蛋白在氧限条件下可明显促进肉桂地链霉菌的菌体生长和抗生素合成。  相似文献   

7.
8.
摘要 目的:通过建立大肠杆菌感染型、脂多糖诱导型、宿主屏障破坏(盲肠结扎)型脓毒症模型,评估具有代表性的造模方式。方法:取SD大鼠设置为:大肠杆菌组、脂多糖组、盲肠结扎组、对照1组、对照2组、对照3组,每组10只。于造模后12 h、24 h、36 h、48 h内检测炎症指标:白介素-6(IL-6)、降钙素原(PCT),凝血功能指标:凝血酶原时间(PT)、活化部分凝血活酶时间(APTT),器官功能障碍指标:肌酐(Cre)、谷丙转氨酶(ALT)、心肌肌钙T(cTnT)及动脉血气分析指标:动脉血氧分压(PaO2)、动脉血二氧化碳分压(PaCO2)水平变化。结果:与对照1组、对照2组、对照3组比较,12 h-48 h内,大肠杆菌组、脂多糖组、盲肠结扎组大鼠IL-6、PCT、PT、APTT、Cre、ALT,cTnT,PaCO2升高(P<0.05),PaO2水平降低(P<0.05),且脂多糖组及盲肠结扎组IL-6、PCT、PT、APTT、Cre、ALT,cTnT水平均高于大肠杆菌组(P<0.05),PaO2水平低于大肠杆菌组(P<0.05)。结论:大肠杆菌造模、静脉注射脂多糖造模及盲肠结扎造模均可复制脓毒症模型,且静脉注射脂多糖及盲肠结扎造模大鼠的病情严重程度高于大肠杆菌造模。  相似文献   

9.
佛波酯(TPA)是潜在促肿瘤剂,也是蛋白激酶PKC激活剂.TPA能在极低浓度下替代DG激活PKC,从而导致一系列细胞功能变化.应用100 nmol/L TPA作用于NIH3T3细胞,观察NIH3T3细胞的粘附变化,发现TPA可促进NIH3T3细胞与基质纤连蛋白的粘附,进一步研究Fn的主要受体α5β1整合蛋白在细胞表面含量,发现TPA作用24 h使α5及β1含量分别增加52.3%和51.6%.应用3H-甘露糖标记N-糖链和凝集素柱层析方法分析TPA作用后细胞N-糖链总量和组分比,结果均与对照组相仿,说明是通过增加细胞合成整合蛋白α5及β1亚基含量实现的.在TPA作用于细胞的同时,加入PKC抑制剂Sphingosine,发现α5、β1含量和细胞与Fn的粘附均回复至对照组水平,提示TPA增加α5β1整合蛋白合成而增加的细胞与Fn粘附作用,是由PKC介导完成的.此外还发现酪氨酸蛋白激酶抑制剂也阻断TPA增加α5β1整合蛋白含量的作用.  相似文献   

10.
金黄色葡萄球菌核酸酶A基因在大肠杆菌中的高效表达   总被引:3,自引:0,他引:3  
这篇文章报道了金黄色葡萄球菌核酸酶A的克隆和在温控启动子PRPL调控下在E.Coli中的高效表达。SDS—PAGE分析表明,核酸酶A的含量可占E.Coli细胞总蛋白含量的60%。经有效的增溶和复性处理后,重组酶具有与天然酶相同的活力;N-末端氨基酸分析的结果指出,fMet在转译后被加工去除;对重组SNaseA在构象上的同一性也通过Phenyl—Su—perose疏水柱层析进行了分析。  相似文献   

11.
The specific activity of three characteristic enzymes, adenylate deaminase, adenylate kinase, and creatine kinase, in the skeletal muscles and heart of a variety of vertebrate land animals, including the human, are surveyed. Data from this study and available studies in the literature suggest that adenosine monophosphate deaminase in land vertebrates is quite high in white skeletal muscle, usually somewhat lower in red muscle, and 15-to 500-fold lower in cardiac muscle. Adenosine monophosphate deaminase is active primarily under ischemic or hypoxic conditions which occur frequently in white muscle, only occasionally in red muscle, and ought never occur in heart muscle, and this may therefore account for observed enzyme levels. The common North American toad, Bufo americanus, provides a striking exception to the rule with cardiac adenosine monophosphate deaminase as high as in mammalian skeletal muscle, whereas its skeletal muscle level of adenosine monophosphate deaminase is several times lower. The exceptional levels in the toad are not due to a change in substrate binding and are not accompanied by comparable change in the level of adenylate or creatine kinase. Nor do they signal any major change in isozyme composition, since a human muscle adenosine monophosphate deaminase-specific antiserum reacts with toad muscle adenosine monophosphate deaminase, but not with toad heart adenosine monophosphate deaminase. They do not represent any general anuran evolutionary strategy, since the bullfrog (Rana catesbeiana) and the giant tropic toad (Bufo marinus) have the usual vertebrate pattern of adenosine monophosphate deaminase distribution. Lower skeletal muscle activities in anurans may simply represent the contribution of tonic muscle fiber bundles containing low levels of adenosine monophosphate deaminase, but the explanation for the extremely high adenosine monophosphate deaminase levels in heart ventricular muscle is not apparent.Abbreviations AK adenylate kinase - AMP adenosine monophosphate - AMPD, AMP deaminase - CPK creatine (phospho)kinase - EHNA erythro-9-(2-hydroxy-3-nonyl)-adenine-HCl  相似文献   

12.
Akt (or protein kinase B) plays a central role in coordinating growth, survival and anti-apoptotic responses in cells and we hypothesized that changes in Akt activity and properties would aid the reprioritization of metabolic functions that occurs during mammalian hibernation. Akt was analyzed in skeletal muscle and liver of Richardson's ground squirrels, Spermophilus richardsonii, comparing the enzyme from euthermic and hibernating states. Akt activity, measured with a synthetic peptide substrate, decreased by 60–65% in both organs during hibernation. Western blotting showed that total Akt protein did not change in hibernation but active, phosphorylated Akt (Ser 473) was reduced by 40% in muscle compared with euthermic controls and was almost undetectable in liver. Kinetic analysis of muscle Akt showed that S0.5 values for Akt peptide were 28% lower during hibernation, compared with the euthermic enzyme, whereas S0.5 ATP increased by 330%. Assay at 10 °C also elevated S0.5 ATP of euthermic Akt by 350%. Changes in ATP affinity would limit Akt function in the hibernator since the muscle adenylate pool size is also strongly suppressed during cold torpor. Other parameters of euthermic and hibernator Akt were the same including activation energy calculated from Arrhenius plots and sensitivity to urea denaturation. DEAE Sephadex chromatography of muscle extracts revealed three peaks of Akt activity in euthermia but only two during hibernation suggesting isozymes are differentially dephosphorylated during torpor. Altered enzyme properties and suppression of Akt activity would contribute to the coordinated suppression of energy-expensive anabolic and growth processes that is needed to maintain viability during over weeks of winter torpor.  相似文献   

13.
Since none of the hormones which activate adenylate cyclase in other tissues have been found to activate adenylate cyclase or to induce tyrosine aminotransferase in cultured Reuber hepatoma cells (H35), despite the stimulatory effects of cyclic AMP derivatives on the latter enzyme, we tested the ability of cholera toxin to influence these processes. At low concentrations cholera toxin was found to mimic the ability of cyclic AMP derivatives to selectively stimulate the synthesis of the aminotransferase. Adenylate cyclase and protein kinase activity were also enhanced, but only after a lag period as in other systems. Specific phosphorylation of endogenous H1 histone was also shown to be increased by cholera toxin treatment. The increase in tyrosine aminotransferase activity is due to an increase in de novo synthesis as shown by radiolabeling experiments utilizing specific immunoprecipitation. The activity of another soluble enzyme induced by dibutyryl cyclic AMP, PEP carboxykinase, was also stimulated by exposure of H35 cells to cholera toxin. Combinations of cholera toxin and dexamethasone led to greater than additive increases in the activity of both the aminotransferase and carboxykinase. Close coupling of cyclic AMP production with protein kinase activation and enzyme induction was suggested by the observation that the ED50 values for the stimulation of adenylate cyclase, cyclic AMP production, protein kinase, and tyrosine aminotransferase activities were found to be the same (5–7 ng/ml) within experimental error. The results indicate that the adenylate cyclase system in H35 cells is functionally responsive and they support the suggestion that activation of protein kinase is functionally linked to induction of specific enzymes.  相似文献   

14.
Adenylate kinases supply energy routes in cellular energetic homeostasis. In this work, we identified and characterized the adenylate kinase activity in extracts from the flagellated parasite Trypanosoma cruzi, the causative agent of Chagas' disease. Adenylate kinase activity was detected in different subcellular fractions and the cytosolic isoform was biochemically characterized. Cytosolic adenylate kinase specific activity increases continuously during the epimastigote growth and is down-regulated when other soluble phosphotransferase, arginine kinase, is overexpressed. Six different genes of adenylate kinase isoforms were identified and the mRNA expression was confirmed by RT-PCR and Northern Blot. Three open reading frames coding for different enzyme isoforms named TzADK1, TzADK2 and TzADK5 were cloned and functionally expressed in E. coli. This work reports an unusually large number of genes of adenylate kinases and suggests a coordinated regulation of phosphotransferase-mediated ATP regenerating pathways in the unicellular parasite Trypanosoma cruzi.  相似文献   

15.
Arginine kinase (AK) is a phosphotransferase that plays a critical role in energy metabolism in invertebrates. The gene encoding Locusta migratoria manilensis AK was cloned and expressed in Escherichia coli by two prokaryotic expression plasmids, pET-30a and pET-28a. The recombinant protein was expressed as inclusion bodies using pET-30a. After denaturation, the recombinant AK was successfully renatured and confirmed to be enzymatically active. Addition of Tween-20 and SDS to the dilution system led to higher renaturation efficiency. Using another expression plasmid, pET-28a, and changing the expression conditions resulted in a soluble and functional form of AK, which was purified by an improved method using Sephadex G-75 chromotography to a final yield of 358 mg L− 1 of LB medium. Some parameters for the renatured and soluble forms of AK, including Km, Kd, specific activity, electrophoretic mobility and isoelectric focusing, were identical with those of AK obtained directly from L. migratoria manilensis leg muscle. Comparison of kinetic constants with those of AKs from other sources indicated that L. migratoria manilensis AKs have the highest kcat and stronger synergistic substrate binding. The first report of a concise purification method enables the enzyme to be prepared in large quantities. This research should enable further detailed investigations of the enzymatic mechanism by site directed mutagenesis techniques.  相似文献   

16.
Chicken muscle adenylate kinase was produced in a large amount in Escherichia coli cells harboring an expression plasmid, pKK-cAKl-1. The plasmid was constructed by placing the cDNA sequence for chicken muscle adenylate kinase after the tac promoter. After induction by isopropyl-beta-D-thiogalactopyranoside, the enzyme protein amounted to about 10% of the bacterial proteins. The enzyme was readily purified in two steps by using phosphocellulose and Sephadex G-100 columns. The apparent molecular weight of the enzyme produced in E. coli was estimated to be 22,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, in agreement with the value deduced from the cDNA sequence. Ten amino acids in the NH2-terminal region were determined, and were identical with the sequence deduced from the cDNA sequence except that the terminal methionine was absent. Michaelis constants for ATP, ADP, and AMP of the enzyme thus synthesized were essentially identical to those determined with the enzyme in crude extracts of chicken skeletal muscle.  相似文献   

17.
It has proposed that hexokinase bound to mitochondria occupies a preferred site to wich ATP from oxidative phosphorylation is channeled directly (Bessman, S. (1966) Am. J. Medicine 40, 740–749). We have investigated this problem in isolated Zajdela hepatoma mitochondria. Addition of ADP to well-coupled mitochondria in the presence of an oxidizable substrate initiates the synthesis of glucose 6-phosphate via bound hexokinase. This reaction is only partially inhibited by oligomycin, carboxyatractyloside, carbonyl cyanide m-chlorophenylhydrazone (CCCP) ot any combination of these, suggesting a source of ATP in addition to oxidative phosphorylation. This source appears to be adenylate kinase, since Ado2P5, an inhibitor of the enzyme, suppresses hexokinase activity by about 50% when added alone or suppresses activity completely when added together with any of the inhibitors of oxidative phosphorylation. Ado2P5 does not uncouple oxidative phosphorylation nor does it inhibit ADP transport (state 3 respiration) or hexokinase. The relative amount of ATP contributed by adenylate kinase is dependent upon the ADP concentration. At low ADP concentraions, glucose phosphorylation is supported by oxidative phosphorylation, but as the adenine nucleotide translocator becomes saturated the ATP contributed by adenylate kinase increases due to the higher apparent Km of the enzyme. Under conditions of our standard experiment ([ADP] = 0.5 mM), adenylate kinase provides about 50% of the ATP used by hexokinase in well-coupled mitochondria. In spite of this, externally added ATP supported higher rates of hexokinase activity than ADP. Our findings demonstrate that oxidative phosphorylation is not a specific or preferential source of ATP for hexokinase bound to hepatoma mitochondria. The apparent lack of a channeling mechanism for ATP to hexokinase in these mitochondria is discussed.  相似文献   

18.
Of the total adenylate-kinase activity in 10-d-old barley and wheat leaves, 40–50% is localised in the chloroplasts, while in mature spinach leaves 50–70% of the enzyme is chloroplastic. The extra-chloroplastic adenylate-kinase activity is associated with the mitochondria, very little, if any, is freely soluble in the cytoplasm. The adenylate pool of the cytoplasm could have access to adenylate-kinase activity in the intermitochondrial space because of the free permeation of adenylates across the outer mitochondrial membrane. Thus the adenylate pool of the cytoplasm could be subject to adenylate-kinase equilibrium. The mitochondrial adenylate kinase appeared to the localised exclusively in the intermembrane space.  相似文献   

19.
Adenylate kinase, the product of the adk locus in Escherichia coli K12, catalyzes the conversion of AMP and ATP to two molecules of ADP. The gene has been cloned by complementation of an adk temperature sensitive mutation. The DNA sequence of the complete coding region and of 5'- and 3'-untranslated regions were determined. The resulting protein sequence was found to contain several regions of high homology with cytosolic adenylate kinase of pig muscle (AK1), whose three-dimensional structure has been determined. The most significant of the amino acid exchanges is the replacement of histidine 36 with glutamine. This residue is believed to play a role in catalysis through metal ion binding. The codon usage pattern and the determination of adenylate kinase molecules per cell shows that the enzyme is one of the more abundant soluble proteins of the bacterial cells.  相似文献   

20.
We examined by circular dichroism (CD) spectroscopy in far- and near-ultraviolet three different molecular forms of Escherichia coli adenylate kinase: the wild type protein, the enzyme carboxymethylated at a single cysteine residue (Cys-77), and the thermosensitive adenylate kinase. The thermosensitive enzyme differs from the wild type protein in that a serine is substituted for a proline residue at position 87 (Gilles, A.-M., Saint Girons, I., Monnot, M., Fermandjian, S., Michelson, S., and Barzu, O. (1986) Proc. Natl. Acad. Sci. U. S. A., 83, 5798-5802). We also examined the CD spectra of isolated peptides resulting from chemical cleavage of adenylate kinase at Cys-77 (C1, residues 1-76; C2, residues 77-214). The secondary structure composition of wild type bacterial adenylate kinase (50% alpha-helix and 15% beta-sheet) was close to that derived from x-ray analysis of pig muscle enzyme (Schulz, G.E., Elzinga, M., Marx, F., and Schirmer, R. H. (1974) Nature 250, 120-123). Carboxymethylation of wild type protein did not greatly affect the CD spectrum. The secondary structure of the thermosensitive adenylate kinase was observed to be significantly different from that of the wild type enzyme (reduction in alpha-helix content to 39%). Changes in ellipticities at 222 nm as a function of temperature indicated that the melting temperature for thermosensitive adenylate kinase was 38 degrees C and that for the wild type enzyme was 54 degrees C. Isolated C1 and C2 peptides had a large proportion of unordered structures. When mixed, C1 and C2 fragments reassociated into structures resembling native, uncleaved adenylate kinase. The recovery of ordered structures, indicated by CD spectroscopy, paralleled the recovery of catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号