首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
转Cry1Ab/Ac基因水稻对稻田浮游动物群落物种多样性的影响   总被引:1,自引:0,他引:1  
为了解转Bt基因抗虫水稻对稻田浮游动物群落的安全性,本文以转Cry1Ab/Ac基因水稻"华恢1号"(HH1)为试验材料,以其非转基因亲本水稻"明恢63"(MH63)为对照,以浮游动物为指示生物,通过湖南湘潭基地连续3年的大田实验,研究了转Cry1Ab/Ac基因水稻对稻田浮游动物群落物种多样性的影响。结果表明:HH1与MH63两稻田生境浮游动物群落相似性高于0.70,优势种组成相似性高于0.89;浮游动物群落结构各参数的时间动态与总体分析均无显著差异;转Cry1Ab/Ac基因抗虫水稻HH1对稻田浮游动物群落物种多样性无不良影响。  相似文献   

2.
【目的】为探讨转基因Bt水稻种植对土壤动物的潜在生态风险性。【方法】本研究将3种转Bt基因水稻及其非转基因亲本水稻叶片残体饲养白符跳虫Folsomia candida,通过观察其粪便的数量与分布以分析白符跳虫对Bt水稻的取食选择行为。【结果】研究结果表明,Bt蛋白(Cry1Ab和Cry1Ac)不会影响白符跳虫的取食选择;而Bt基因插入后导致的水稻成分的变化可能影响了白符跳虫对水稻残体的偏好性。结果可为评估转Bt水稻对土壤生态系统影响提供参考价值,为转Bt水稻安全性评价提供科学的依据。  相似文献   

3.
【目的】为探讨转基因Bt水稻种植对土壤重要分解者跳虫的潜在生态风险性。【方法】将同一非转基因亲本插入3种不同的Bt基因(cry1C、cry2A、cry1Ab/Ac)的转Bt基因水稻叶片残体饲养白符跳虫Folsomia candida,通过放入不同低温环境下观察其存活率和粪便排泄速率以分析白符跳虫取食Bt水稻叶片后的适应低温行为。【结果】结果表明,3种转Bt基因水稻相对于非转基因亲本水稻品种而言,不会影响白符跳虫的适应低温环境;而不同Bt基因插入后导致的水稻成分的变化可能影响了白符跳虫对水稻残体的偏好性,进而影响其在低温环境下的适应行为。【结论】结果可为评估转Bt水稻对土壤生态系统影响提供参考价值,为转Bt水稻安全性评价提供科学的依据。  相似文献   

4.
【目的】新型转基因棉花在进入大规模商业化应用前,需对其生态环境安全性进行评价;同时,经基因改造的新型转基因抗虫棉花可能影响抗虫棉的次生代谢,进而导致一些综合的生态学效应,致使棉花生理上发生改变,这也是转基因植物安全性评价研究的重要内容。【方法】比较了不同关键时期新型转Cry1Ac+Cry2Ab基因棉花与转Cry1Ac基因棉花和非转基因棉花叶片的鲜重、干重和干鲜比、主要酶[超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)]活性、营养物质(蛋白质、氨态氮、脯氨酸和可溶性糖)和次生代谢产物(棉酚和单宁)含量的差异及其对棉田不同昆虫营养层昆虫个体总数和物种数的影响。【结果】棉花生长的蕾期、花期和花铃期,转Cry1Ac+Cry2Ab基因棉花、转Cry1Ac基因棉花和非转基因棉花叶片的鲜重、干重和干鲜比呈先升高后降低的趋势;SOD和POD活性在花铃期明显升高,CAT、APX和GR活性无显著变化;蛋白质、氨态氮含量无明显变化,脯氨酸和可溶性糖含量均表现为先升高后下降的趋势;棉酚含量在3个时期无显著变化,而单宁含量呈逐渐升高的趋势。3种棉花叶片中干物质积累、主要酶活性、营养物质和次生代谢产物含量均无显著差异;单株大铃数表现为转Cry1Ac+Cry2Ab基因棉花转Cry1Ac基因棉花非转基因棉花,小铃数则表现为转Cry1Ac基因棉花Cry1Ac+Cry2Ab基因棉花非转基因棉花;昆虫群落和害虫亚群落的昆虫个体总数均表现为转Cry1Ac+Cry2Ab基因棉田转Cry1Ac基因棉田非转基因棉田,天敌亚群落昆虫个体总数无显著变化;3种棉田中昆虫群落、害虫亚群落和天敌亚群落的物种数均未发生显著变化。【结论】转Cry1Ac+Cry2Ab基因棉花叶片干物质积累、产量性状、生化物质含量、酶活性在不同生长期表现不同,但上述参数在3种棉花之间无显著差异;且转Cry1Ac+Cry2Ab基因棉花具有较好的抗虫性,能有效降低棉田害虫数量。  相似文献   

5.
宋莹莹  王龙  李立坤  刘向辉  戈峰  陈法军 《生态学报》2019,39(12):4390-4399
随着转基因技术的飞速发展,越来越多的转基因作物新品种被培育成功并得以推广应用,但转基因作物对非靶标生物的生态安全性问题日益引起人们的广泛关注。为加强转基因作物的生态风险评估,以Cry1Ab纯合基因型转BtBacillus thuringiensis)水稻"克螟稻"和Cry1Ab/Ac融合基因型转Bt水稻"华恢1号"及其对照亲本水稻稻田土壤螨类为研究对象,系统调查研究了纯和基因型和融合基因型转Bt水稻种植下土壤螨类的群落组成、数量动态及其群落多样性的变化。研究结果显示,转Bt水稻对土壤螨类的群落组成无负面影响,仅一些稀有类群(<1%)和常见类群(介于1%和10%)消失或出现。且与对照亲本相比,纯和基因型转Bt水稻中仅上罗甲螨科(Epilohmanniidae)上罗甲螨属(Epilohmannia)的百分比含量显著增加了525%。此外,转Bt水稻与其对照亲本稻田土壤螨类的数量动态、群落多样性、群落均匀度和科属丰富度之间均差异不显著(P > 0.05)。而与纯合基因型转Bt水稻相比,融合基因型转Bt水稻可显著提高大田土壤螨类的数量和科属丰富度(P < 0.05)。可见,融合基因型转Bt水稻种植比纯合基因型转Bt水稻更有利于土壤螨类等非靶标生物的发生及其生物多样性保护。  相似文献   

6.
贺明霞  何康来  王振营  王新颖  李庆 《昆虫学报》2013,56(10):1135-1142
亚洲玉米螟Ostrinia furnacalis (Guenée) 是危害玉米的重要害虫之一, 转Bt基因抗虫玉米为其防治提供了新的途径。然而, 靶标害虫产生抗性将严重阻碍Bt制剂及转Bt基因抗虫玉米的持续应用。明确害虫对转Bt基因玉米表达的毒素蛋白的抗性演化, 对于制定科学有效的抗性治理策略具有重要的理论和实际意义。本实验通过人工饲料汰选法研究了Bt Cry1Ie毒素胁迫下亚洲玉米螟的抗性发展及汰选14代的种群对其他Bt毒素(Cry1Ab, Cry1Ac和Cry1Fa)的交互抗性, 并观察了Cry1Ie蛋白胁迫对亚洲玉米螟生物学的影响。结果表明: 随着汰选压不断提高, 亚洲玉米螟种群对Cry1Ie毒素的敏感性逐渐下降。汰选14代后, 种群对Cry1Ie毒素的抗性水平提高了23倍。然而, Cry1Ab, Cry1Ac和Cry1Fa对所获Cry1Ie汰选种群的毒力与对敏感种群的毒力相比没有显著差异, 说明Cry1Ie汰选没有引起亚洲玉米螟对Cry1Ab, Cry1Ac和Cry1Fa毒素产生交互抗性。同时, 与敏感种群相比, Cry1Ie汰选14代的种群幼虫平均发育历期延长5.7 d, 蛹重减轻13.7%, 单雌产卵量下降40.0%。本研究结果说明, 大面积单一种植转cry1Ie基因抗虫玉米, 可能引起亚洲玉米螟产生抗性; 亚洲玉米螟Cry1Ie抗性种群对Cry1Ab, Cry1Ac和Cry1Fa没有交互抗性, 含有cry1Ie和cry1Ab, cry1Ac或cry1F双/多基因抗虫玉米, 可作为靶标害虫抗性治理的重要策略。  相似文献   

7.
转Bt基因水稻对两种弹尾虫及尖钩宽黾蝽捕食作用的影响   总被引:6,自引:0,他引:6  
转Bt基因水稻KMD1、KMD2和对照水稻XS11稻田主要有两种弹尾虫:灰橄榄长角跳虫 Entomobryagriseoolivata (Packard) 和钩圆跳虫 Bourletiella christianseni Banks。两种Bt稻田中灰橄榄长角跳虫种群密度均显著高于对照XS11稻田;在以KMD1和KMD2腐烂 茎叶为食的灰橄榄长角跳虫成虫中检测到微量Cry1Ab杀虫蛋白。室内测定结果表明,不管是单 头捕食还是多头协同捕食,尖钩宽黾蝽Microvelia horvathi Lundblad 成虫对用3种供试 水稻残体饲养的灰橄榄长角跳虫的捕食量和功能反应均符合HollingⅡ型方程,其日捕食量、瞬 时攻击率(a)和处理时间(Th)均无显著差异。  相似文献   

8.
转Bt cry1Ab基因水稻对稻田弹尾虫种群数量的影响   总被引:1,自引:0,他引:1  
以转Bt cry1Ab基因水稻克螟稻1号(KMD1)和克螟稻2号(KMD2)及其亲本非转基因水稻秀水11(XS11)为材料,于2003年9月和翌春4月,调查了KMD1和KMD2对水稻灌浆期和收割后休田期稻田土表落叶层中弹尾虫种群数量的影响.结果表明,KMD植株表达的cry1Ab杀虫蛋白可在稻田环境中残留160 d以上;在水稻灌浆期采用吸虫器法在稻田落叶层中采集到灰橄榄长角跳虫(Entomobrya griseoolivata)和钩圆跳虫(Bourletiella christianseni)等2种弹尾虫,其中灰橄榄长角跳虫在KMD1和KMD2稻田中的种群密度显著高于XS11稻田;在水稻收割后休田期采用网袋法采集到灰橄榄长角跳虫、钩圆跳虫、球角跳虫(Hypogastrura matura)和等节跳虫(Isotoma monochaeta)等4种弹尾虫,其中转Bt基因水稻稻田中的灰橄榄长角跳虫和球角跳虫的种群密度显著高于XS11稻田,且其植株组织残体生物量损失率显著高于XS11.  相似文献   

9.
广西兴安转Bt水稻大田两迁害虫发生动态   总被引:1,自引:0,他引:1  
Sui H  Li ZY  Xu YB  Han C  Han LZ  Chen FJ 《应用生态学报》2011,22(11):3021-3025
以转Bt水稻华恢1号(Cry1Ac/ CryAb融合基因型,简称HH1)及其对照亲本明恢63(简称MH63)稻田两迁害虫稻纵卷叶螟和白背飞虱为研究对象,系统研究转基因抗虫水稻种植下两迁害虫的发生规律及其致害力差异.结果表明:转Bt水稻及其对照亲本上稻纵卷叶螟的落卵量和幼虫发生量无显著差异,但转Bt水稻的卷叶株率和卷叶率都显著低于对照亲本.表明转Bt水稻对靶标害虫稻纵卷叶螟具有较高抗性.转Bt水稻及对照亲本上白背飞虱若虫、成虫及整个种群的发生动态差异不显著,且转Bt水稻对长翅型和短翅型成虫的种群发生影响也不显著.白背飞虱发生高峰期,转Bt水稻上若虫及短翅型成虫发生量均明显高于对照亲本;相反,转Bt水稻上长翅型成虫发生量明显低于对照亲本,且水稻生育后期长翅型成虫雌性比明显低于对照亲本.转Bt水稻大面积商业化种植下其非靶标害虫白背飞虱的发生危害变得更为复杂.  相似文献   

10.
为了解乌鲁木齐地区不同生境土壤跳虫群落结构及其多样性,研究土壤跳虫群落结构特征,了解不同生境差异对土壤跳虫群落结构的影响,分别在2008年4月、7月、9月和11月中旬对该区自然榆林、防护林、植物园、草地、居民点、废弃地及菜地等7种典型生境土壤跳虫群落特征进行了调查。共采集跳虫3728只,隶属于4目13科27属,其中伪亚跳属Pseudachorutes、球角跳属Hypogastrura、棘跳属Onychiurus、等节跳属Isotoma为优势类群,分别占总数的13.25%、12.31%、11.40%、10.03%,共占总数的47.00%。跳虫属Podura、长跳属Entomobrya、原等跳属Proisotoma、土跳属Tullbergia、驼跳属Cyphoderus、裸长角跳属Sinella、钩圆跳属Bourletiella、德跳属Desoria、小等节跳属Isotomiella、疣跳属Neanura、类符跳属Folsomina、符跳属Folsomia、刺驼跳属Cyphoderopsis及缺弹跳属Anuropho-rus等14属为常见类群,共占总数的47.65%,其余9属均为稀有类群,共占总数的5.35%。不同生境土壤跳虫的个体数和类群数差异较大(P<0.05),其中个体数顺序为自然榆林>防护林>草地>植物园>居民点>废弃地>菜地。跳虫个体密度和类群数在不同季节间差异明显(P<0.05),其中个体数顺序为9月>7月>4月>11月,Shan-non-Wiener多样性指数(H)在不同生境间均有显著差异(P<0.05),其顺序为植物园>防护林>自然榆林>草地>居民点>废弃地>菜地。Simpson优势度指数(C)为菜地>居民点>废弃地>草地>自然榆林>植物园>防护林。各生境间土壤跳虫群落的相似性较差,仅少数生境间相似性达到相似水平。研究表明不同生境植被类型是影响该区跳虫群落结构和多样性的主要因素。  相似文献   

11.
以Bt水稻华恢1号(Cry1Ac和CryAb融合基因;简称HH1)及其对照亲本明恢63(简称MH63)稻田靶标害虫二化螟Chilosuppressalis和次靶标害虫大螟Sesamia inferens为研究对象,研究了转基因抗虫水稻大田螟虫发生规律及其靶标和次靶标害虫致害力差异。结果表明,Bt水稻及其对照亲本上二化螟或大螟的卵块数量差异不显著,同时,对照亲本上二化螟与大螟的落卵量差异不显著,但Bt水稻上二化螟的落卵量显著大于大螟。与对照亲本相比,Bt水稻上二化螟幼虫发生量显著降低,降幅高达84.9%—100%,但大螟发生量差异不显著;此外,对照亲本上二化螟幼虫发生量显著高于大螟,但Bt水稻上两者差异不显著。同时,Bt水稻上二化螟导致的枯心/白穗率和受害丛率都显著低于其在对照亲本上的致害程度,降幅分别为30.8%—98.3%和11.4%—96.6%,而大螟差异不显著。可见,Bt水稻对靶标害虫二化螟具有较高抗性,而对次靶标害虫大螟的抗性不明显。另一方面,Bt水稻和对照亲本上二化螟导致的枯心/白穗率和受害从率都显著高于大螟。可见,二化螟仍是当前非转基因水稻上的主要害虫,而Bt水稻对二化螟幼虫发生的显著抑制作用以及对大螟幼虫发生的不显著影响,使得其大面积商业化种植下靶标害虫二化螟和次靶标害虫大螟间的竞争替代成为可能。  相似文献   

12.
Although transgenic crops expressing either Cry1Ab or Cry1Ac, both derived from Bacillus thuringiensis (Bt), have been used commercially, the evolution of insects resistance to these CRY proteins has become a challenge. Thus, it has been proposed that co-expression of two Bt proteins with different modes of action may delay the development of resistance to Bt. However, few Bt proteins have been identified as having different modes of action from those of Cry1Ab or Cry1Ac. In this study, transgenic lines of maize over-expressing either Cry1Ie or Cry1Ac gene have been developed. Several independent transgenic lines with one copy of the foreign gene were identified by Southern blot analysis. Bioassays in the laboratory showed that the transgenic plants over-expressing Cry1Ie were highly toxic against the wild-type cotton bollworm (Heliothis armigera), producing mortality levels of 50 % after 6 days of exposure. However, the mortality caused by these plants was lower than that caused by the Cry1Ac transgenic plants (80 %) and MON810 plants expressing Cry1Ab (100 %), which both exhibited low toxicity toward the Cry1Ac-resistant cotton bollworm. In contrast, three transgenic maize lines expressing Cry1Ie induced higher mortality against this pest and were also highly toxic to the Asian corn borer (Ostrinia furnacalis) in the field. These results indicate that the Cry1Ie protein has a different mode of action than the Cry1Ab and Cry1Ac proteins. Therefore, the use of transgenic plants expressing Cry1Ie might delay the development of Bt-resistant insects in the field.  相似文献   

13.
Plutella xylostella L. (Lepidoptera: Plutellidae) is an important pest causing significant losses to vegetables worldwide. Insecticides resistance in P. xylostella is a serious issue for scientists since last 30 years. However, deltamethrin and Bt Cry1Ac are commonly used insecticides against P. xylostella but studies involving development of resistance in P. xylostella against these two insecticides at different temperatures are lacking. The current study was aimed to find out the toxicity of deltamethrin and Bt Cry1Ac, and resistance development in P. xylostella. Results showed that the positive correlation between the temperature and toxicities of deltamethrin and Bt Cry1Ac. The results indicated −0.051, −0.049, −0.047, and −0.046 folds of deltamethrin resistance at 15 °C, 20 °C, 25 °C, and 30 °C temperatures, respectively from 1st to 12th generations. The toxicity of Bt Cry1Ac after 24 h was 2.2 and 4.8 folds on 1st generation at 20 °C and 25 °C temperatures, respectively compared to the toxicity recorded at 15 °C (non-overlapping of 95% confidence limits). Based on the results of this study, it is concluded that the temperature has a positive correlation with the toxicity of deltamethrin and Bt Cry1Ac against the larvae of P. xylostella. This study suggests that deltamethrin and Bt Cry1Ac can be included in the management program of P. xylostella on many vegetable crops. The baseline susceptibility data might be helpful to understand the resistance mechanisms in P. xylostella.  相似文献   

14.
Bacillus thuringiensis (Bt) has played an important role in biocontrol of pests. However, insecticidal activity of B. thuringiensis against locusts has been rarely reported. Bt strain BTH-13 exhibiting specific activity to locusts was isolated from a soil sample in China and characterized. Its bipyramidal parasporal crystal is mainly composed of a protein of 129 kDa, and produces a mature toxin of 64 kDa after activation. The pattern of total DNA from BTH-13 showed a large and three small plasmid bands. Known δ-endotoxin genes, cry1Aa, cry1Ab, cry1Ac, cry1C, cry3, cry4 and cry7Aa were not found from strain BTH-13 by PCR amplification. The sequence analysis of a DNA fragment produced by PCR amplification with degenerate cry-selective primers revealed that the fragment encoded a δ-endotoxin segment, which exhibited some similarity to several Cry proteins (41% of the highest similarity to Cry7Ba1). Toxicity tests were performed against Locusta migratoria manilensis, and the results demonstrated that trypsin-treated sporulated cultures and crystal proteins had high toxicity to larval and adult locusts. Cry toxin of BTH-13 was detected on the midguts of treated locusts using immunofluorescent technology, which confirmed the site of action of the crystal proteins in their toxicity for locusts.  相似文献   

15.
Transgenic Bacillus thuringiensis (Bt) rice have been reported to acquire effective resistance against the target pests; however, the insertion and expression of alien Bt genes may have some unintended effects on the growth characteristics of rice. A screen-house experiment was conducted and repeated twice to investigate the growth characteristics and Bt protein expressions in two Bt rice lines [MH63 (Cry2A*) and MH63 (Cry1Ab/Ac)], which had different Bt protein expression levels in leaves, under zero nitrogen (N0) and recommended nitrogen (NR) fertilizer applications. Compared to the counterpart MH63, MH63 (Cry2A*) under N0 experienced accelerated leaf senescence and a lower internal N use efficiency (IEN), resulting in a 23.2% decrease in grain yield and a lower accumulated biomass. These variations were revealed to be correlated to the higher ratio of the Bt protein content to the soluble protein content (BTC/SPC) with a maximum value of 4.3‰ in MH63 (Cry2A*) leaves in the late growth stage. Under NR, no differences in growth characteristics between MH63 (Cry2A*) and MH63 were found. The growth characteristics of MH63 (Cry1Ab/Ac), with a lower BTC/SPC in the late growth stage compared to MH63 (Cry2A*), were identical to those of MH63 under the two N applications. Results show that the transgenic Bt rice MH63 (Cry2A*), with a relatively higher Bt protein expression in the late growth stage, had an inferior adaptation to nitrogen deficiency compared to its non-Bt counterpart. And this inferior adaptation was found to be correlated with the higher BTC/SPC in MH63 (Cry2A*) leaves in the late growth stage.  相似文献   

16.
Abstract Effects of elevated CO2 (twice ambient vs. ambient) and Bt Cry1Ac transgene (Bt cotton cv. 33B vs. its nontransgenic parental line cv. DP5415) on the interspecific competition between two ecologically similar species of cotton aphid Aphis gossypii and whitefly biotype‐Q Bemisia tabaci were studied in open‐top chambers. The results indicated that elevated CO2 and Bt cotton both affected the population abundances of A. gossypii and biotype‐Q B. tabaci when introduced solely (i.e., without interspecific competition) or two species coexisted (i.e., with interspecific competition). Compared with ambient CO2, elevated CO2 increased the population abundances of A. gossypii and biotype‐Q B. tabaci as fed on Bt and nontransgenic cotton on 45 (i.e., seedling stage) and 60 (i.e., flowering stage) days after planting (DAP), but only significantly enhanced aphid abundance without interspecific competition on the 45‐DAP nontransgenic cotton and 60‐DAP Bt cotton, and significantly increased whitefly abundance with interspecific competition on the 45‐DAP Bt cotton and 60‐DAP nontransgenic cotton. In addition, compared with nontransgenic cotton at elevated CO2, Bt cotton significantly reduced biotype‐Q B. tabaci abundances without and with interspecific competition during seedling and flowering stage, while only significantly decreasing A. gossypii abundances without interspecific competition during the seedling stage. When the two insect species coexisted, the proportions of biotype‐Q B. tabaci were significantly higher than those of A. gossypii on Bt and nontransgenic cotton at the same CO2 levels, and elevated CO2 only significantly increased the percentages of biotype‐Q B. tabaci and significantly reduced the proportions of A. gossypii on seedling and flowering nontransgenic cotton. Therefore, the effects of elevated CO2 were favorable for biotype‐Q B. tabaci to out‐compete A. gossypii under the predicted global climate change.  相似文献   

17.
There is no conclusive evidence that Helicoverpa spp. (Lepidoptera: Noctuidae) in Australia have evolved significant levels of resistance to Bollgard II® cotton (which expresses two Bt toxin genes, cry1Ac and cry2Ab). However, there is evidence of surviving larvae on Bollgard II cotton in the field. The distribution and survival of early‐instar Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae were examined on whole Bollgard II and non‐Bt cotton plants in greenhouse bioassays. The expression of Cry toxins in various parts of Bollgard II plants was compared to the survival of larvae in those locations. Only 1% of larvae survived after 6 days on greenhouse‐grown Bollgard II plants compared to 31% on non‐Bt cotton plants. Overall, and across all time intervals, more larvae survived on reproductive parts (squares, flowers, and bolls) than on vegetative parts (leaves, stems, and petioles) on Bollgard II plants. The concentration of Cry1Ac toxin did not differ between plant structures, whereas Cry2Ab toxin differed significantly, but there was no relationship between the level of expression and the location of larvae. This study provides no evidence that lower expression of Cry toxins in the reproductive parts of plants explains the survival of H. armigera larvae on Bollgard II cotton.  相似文献   

18.
The effects of elevated CO2 (750 vs. 375μl/l) on population abundances and metabolism enzyme of AChE and protective enzymes of SOD, POD and CAT in brown planthoppers (BPH) Nilaparvata lugens, and on size and abundances of yeast‐like endosymbiotes (YLES) were studied as BPH fed Bacillus thuringiensis (Bt) rice expressing pure Cry1Ab after successively two generations in open‐top chambers. The results indicated that: (1) Brachypterous and macropterous subpopulations and total population increased with elevated CO2. Significant increases were found as BPH fed non‐transgenic rice while only significant increase as macropterous‐BPH fed Bt rice. (2) The responses of brachypterous and macropterous‐BPH to Bt rice were different. Brachypterous‐subpopulation significantly decreased (13.6%) while macropterous ones significantly increased (43.8%) as fed Bt rice relative to non‐transgenic rice at elevated CO2. (3) Elevated CO2 only significantly inhibited AChE activity as brachypterous‐BPH fed non‐transgenic rice. Significant increases in POD and SOD, and significant decrease in CAT were found as brachypterous‐BPH fed Bt rice, while significant increases in CAT and significant decrease in POD were also observed as fed non‐transgenic rice in elevated CO2 relative to ambient CO2. (4) Bt rice significantly inhibited POD and SOD activity at ambient CO2, while only significantly enhanced SOD activity at elevated CO2. (5) Elevated CO2 significantly decreased YLES per mg/head of brachypterous‐BPH females while only significantly decreased YLES per mg/head as brachypterous‐BPH males fed Bt rice. And there were significant differences in YLES width or length between females and males. Elevated CO2 can markedly affect the symbiosis relationship between YLES and BPH through the bottom‐up forcing on BPH physiological metabolism. And the damage inflicted by BPH on rice, irrespective of the presence of insecticidal genes, is predicted to be higher at elevated CO2. Furthermore, transgenic Bt rice can also exacerbate emigrating‐macropterous‐BPH occurring especially at elevated CO2.  相似文献   

19.
The primary technical constraint plant scientists face in generating insect resistant transgenic crops with insecticidal Bacillus thuringiensis (Bt) crystal protein (Cry) genes remains failing to generate sufficiently large numbers of effective resistant transgenic plant lines. One possible means to overcome this challenge is through deployment of a Cry toxin gene that contains high levels of insecticidal specific activity for target insect pests. In the present study, we tested this hypothesis using a natural variant of the Cry1Ab toxin under laboratory conditions that possessed increased insecticidal potency against the yellow stem borer (YSB, Scirpophaga incertulus), one of the most damaging rice insect pests. Following adoption of a stringent selection strategy for YSB resistant transgenic rice lines under field conditions, results showed recovery of a significantly higher number of YSB resistant independent transgenic plant lines with the variant cry1Ab gene relative to transgenic plant lines harbouring cry1Ab berliner gene. Structural homology modelling of the variant toxin peptide with the Cry1Aa toxin molecule, circular dichroism spectral analysis, and hydropathy plot analysis indicated that serine substitution by phenylalanine at amino acid position 223 of the Cry1Ab toxin molecule resulted in a changed role for α-helix 7 in domain I of Cry1Ab for enhanced toxicity.  相似文献   

20.
The inheritance and expression patterns of the cry1Ab gene were studied in the progenies derived from different Bt (Bacillus thuringiensis) transgenic japonica rice lines under field conditions. Both Mendelian and distorted segregation ratios were observed in some selfed and crossed F2 populations. Crosses between japonica intra-subspecies had no significant effect on the segregation ratios of the cry1Ab gene, but crossing between japonica and indica inter-subspecies led to distorted segregation of the cry1Ab gene in the F2 population. Field-release experiments indicated that the cry1Ab gene was stably transmitted in an intact manner via successive sexual generations, and the concentration of the Cry1Ab protein was kept quantitatively stable up to the R6 generation. The cry1Ab gene, driven by the maize ubiquitin promoter, displayed certain kinds of spatial and temporal expression patterns under field conditions. The content of the Cry1Ab protein varied in different tissues of the main stems, the primary tillers and the secondary tillers. Higher levels of the Cry1Ab protein were found in the stems, leaves and leaf sheaths than in the roots, while the lowest level was detected in grains at the maturation stage. The content of the Cry1Ab protein in the leaves peaked at the booting stage and was lowest at the heading stage. Furthermore, the Cry1Ab content of cry1Ab expression in different tissues of transgenic rice varied individually with temperature. Received: 17 April 2001 / Accepted: 7 May 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号