首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
越来越多的研究表明TLR2和TLR4参与宿主细胞抗病毒感染的天然免疫应答,为了进一步了解TLR2和TLR4的新作用,本文重点归纳TLR2和TLR4的细胞定位、活化的信号途径和介导的细胞因子反应及其共受体,详细总结TLR2和TLR4识别的病毒及介导的抗病毒天然免疫应答,指出TLR2与TLR4互作的新方式,旨在为宿主抗病毒感染的新机制提供新思路。  相似文献   

2.
流感病毒(influenza virus)轻症感染可由机体免疫系统清除,但重症感染则诱发肺脏免疫损伤。流感病毒的病原体相关分子模式(pathogen-associated molecular patterns,PAMPs)可被位于细胞膜、细胞器膜及胞质内的重要模式识别受体(pattern recognition receptors,PRRs)介导识别,活化一系列激酶及转录因子,诱导促炎细胞因子和趋化因子的表达、成熟和分泌,进一步激活天然免疫及获得性免疫应答细胞,介导炎症反应和诱导免疫病理损伤。PRRs是研究天然免疫应答启动机制及抑制重症感染诱导免疫病理损伤的重要靶点。现就Toll样受体(toll-like receptors,TLRs)中的TLR3、TLR7/8、TLR4、RIG-I样受体(RIG-I like receptors,RLRs)和NOD样受体(NOD-like receptor,NLR)在流感病毒感染中的识别及下游信号通路在免疫病理损伤中的作用机制作一综述。  相似文献   

3.
线粒体抗病毒信号蛋白(MAVS)作为一种接头蛋白在调节宿主天然免疫信号通路过程中扮演重要角色.Toll样受体(TLR)和RIG-Ⅰ样受体(RLR)等细胞模式识别受体识别入侵的病原体并将信号传递给MAVS,MAVS通过刺激下游的TBK1复合体和IKK复合体分别活化NF-κB和IRF3等信号通路,进而激活干扰素α/β表达,诱发细胞内抗感染天然免疫反应.MAVS除定位线粒体外,也可定位于过氧化物酶体上.MAVS在细胞内的不同定位决定了其在早期快速和持续性抗病毒天然免疫中的不同调节机制.MAVS只有同时定位在过氧化物酶体和线粒体上才可诱导干扰素刺激基因(ISG)快速且稳定地表达.本文通过对MAVS的发现、结构、细胞定位及其在天然免疫信号通路中的调控机制等最新进展进行综述,以期揭示MAVS蛋白在细胞内天然免疫信号通路中的重要调节作用,为研究病毒逃逸宿主天然免疫的机制和研究新型抗病毒免疫治疗策略提供新思路.  相似文献   

4.
RIG-I样受体与RNA病毒识别   总被引:2,自引:0,他引:2  
秦成峰  秦鄂德 《微生物学报》2008,48(10):1418-1423
RIG-I样受体(RIG-I like receptors,RLR)是一类新发现的模式识别受体,能够识别细胞质中的病毒RNA,通过RLR级联信号诱导干扰素和促炎症细胞因子的产生,对抗病毒天然免疫的建立起着非常重要的作用.RLR信号通路既受宿主的严格调控,也能够作为病毒逃避宿主干扰素反应的靶点.本文重点讨论了RLR及其在RNA病毒识别和抗病毒天然免疫中的作用.  相似文献   

5.
Toll样受体是一类保守的天然免疫识别受体家族,可识别众多微生物共有的保守模式分子——病原体相关分子模式,通过某些信号转导途径,激发机体先天性及获得性免疫应答,引起炎症介质的释放。数个真菌细胞壁成分可被Toll样受体识别,不同的白细胞介素1受体/Toll样受体超家族成员通过MyD88的相互作用,激活Toll样受体信号转导通路,从而诱导宿主抵抗真菌的攻击。  相似文献   

6.
模式识别受体(PRR)在宿主细胞识别与抵御微生物病原体中起到了重要作用。Toll样受体(TLR)是研究比较清楚的一类PRR,可以识别多种病原体成份,启动天然免疫反应。此外,近来发现了几类其他模式识别受体,如C型凝集素受体(CLR),核苷酸寡聚结合域(NOD)样受体(NLR)和视黄酸诱导基因I(RIG—I)样受体(RLR),表明机体的天然免疫反应受到多种机制的精密调控。本文着重综述TLR与其他PRR在识别病原体和介导天然免疫信号通路间的相互关系。  相似文献   

7.
甲型流感病毒作为引起人类和动物急性呼吸道传染病的一个主要病原体,在世界范围内广泛流行。研究表明,甲型流感病毒感染宿主后会诱导宿主的天然免疫应答。甲型流感病毒感染可引起Toll样受体(Toll like receptors,TLRs)和RIG-Ⅰ样受体(RIG-Ⅰ like receptors,RLRs)等宿主模式识别受体介导的抗病毒信号通路的活化,并在多种机制调控下诱导干扰素和其他细胞因子的表达,如Ⅰ型干扰素、Ⅲ型干扰素等,从而启动干扰素刺激基因(Interferon stimulated genes,ISGs)的转录及其抗病毒蛋白的表达,进而实现抗病毒作用。本文就甲型流感病毒感染与干扰素介导的天然免疫应答相关的信号通路和调控机制进行综述。  相似文献   

8.
韩黎  纪蕾  王菡  胡小华 《微生物学通报》2007,34(5):0973-0975
烟曲霉侵染宿主细胞时伴有明显的细胞肌动蛋白骨架重排,而重要模式识别受体PRRs(pattern recognition receptors)之一,Toll样受体(Toll-like receptors,TLR)参与调节病原细菌诱导的宿主细胞肌动蛋白骨架重排,其中TLR2和TLR4两亚型可以识别烟曲霉的病原相关分子模式PAMP(pathogen-assosiated molecular patterns),并诱发炎症因子表达等一系列效应信号,在宿主细胞抗烟曲霉天然免疫中发挥重要作用,但在烟曲霉内化侵入过程中TLR能否特异性介导细胞肌动蛋白骨架重排尚不清楚。因此,研究揭示TLR激活在烟曲霉侵入宿主细胞的调控作用,对寻找可能的抗真菌药物作用靶点具有重要意义。  相似文献   

9.
脑缺血是临床上的常见病,目前已成为导致人类死亡的主要原因之一,脑缺血后存在一个十分复杂的病理生理过程,涉及很多机制。包括离子稳态的破坏,自由基的损伤作用,兴奋性氨基酸的毒性作用,免疫炎症作用和细凋亡等机制。TOLL样受体即TLR(Toll-like receptor TLR),是一类介导天然免疫的跨膜信号传递受体家族,在细胞活化信号传导中发挥着重要作用,已成为联系天然免疫和后天性免疫的桥梁。现在共发现了13中TOLL样体,最近发现Toll样受体能诱发机体的固有免疫应答,介导炎症因子细胞因子的释放,与全身多种重要器官的缺血再灌注损伤有关,研究表明部分TOLL样受体在脑缺血损伤中发挥十分重要的作用。本文就TLR的结构、分布、配体、信号转导通路及其脑缺血中的作用综述如下。  相似文献   

10.
Toll-NF-kB信号途径及其介导的功能   总被引:1,自引:0,他引:1  
Toll样受体(Toll-like receptor,TLR)家族是宿主细胞识别各种微生物致病成份的主要受体,NF-kB位于TLR下游信号通路的枢纽位置,当细胞受到生物应激刺激后激活NF-kB,活化的NF-kB进入细胞核调节炎性细胞因子的表达,启动针对病原微生物的固有免疫和获得性免疫。因此,对Toll-NF-kB信号途径的研究将有助于对免疫反应、炎症病理的理解。  相似文献   

11.
The innate immune system provides the first line of defence against infection. Through a limited number of germline-encoded receptors called pattern recognition receptors (PRRs), innate cells recognize and are activated by highly conserved structures expressed by large group of microorganisms called pathogen-associated molecular patterns (PAMPs). PRRs are involved either in recognition (scavenger receptors, C-type lectins) or in cell activation (Toll-like receptors or TLR, helicases and NOD molecules). TLRs play a pivotal role in cell activation in response to PAMPs. TLR are type I transmembrane proteins characterized by an intracellular Toll/IL 1 receptor homology domain that are expressed by innate immune cells (dendritic cells, macrophages, NK cells), cells of the adaptive immunity (T and B lymphocytes) and non immune cells (epithelial and endothelial cells, fibroblasts). In all the cell types analyzed, TLR agonists, alone or in combination with costimulatory molecules, induce cell activation. The crucial role played by TLR in immune cell activation has been detailed in dendritic cells. A TLR-dependent activation of dendritic cells is required to induce their maturation and migration to regional lymph nodes and to activate na?ve T cells. The ability of different cell types to respond to TLR agonists is related to the pattern of expression of the TLRs and its regulation as well as their intracellular localization. Recent studies suggest that the nature of the endocytic and signaling receptors engaged by PAMPs may determine the nature of the immune response generated against the microbial molecules, highlighting the role of TLRs as molecular interfaces between innate and adaptive immunity. In this review are summarized the main biological properties of the TLR molecules.  相似文献   

12.
Toll-like receptors are key participants in innate immune responses   总被引:5,自引:0,他引:5  
During an infection, one of the principal challenges for the host is to detect the pathogen and activate a rapid defensive response. The Toll-like family of receptors (TLRs), among other pattern recognition receptors (PRR), performs this detection process in vertebrate and invertebrate organisms. These type I transmembrane receptors identify microbial conserved structures or pathogen-associated molecular patterns (PAMPs). Recognition of microbial components by TLRs initiates signaling transduction pathways that induce gene expression. These gene products regulate innate immune responses and further develop an antigen-specific acquired immunity. TLR signaling pathways are regulated by intracellular adaptor molecules, such as MyD88, TIRAP/Mal, between others that provide specificity of individual TLR- mediated signaling pathways. TLR-mediated activation of innate immunity is involved not only in host defense against pathogens but also in immune disorders. The involvement of TLR-mediated pathways in auto-immune and inflammatory diseases is described in this review article.  相似文献   

13.
Innate immunity is an important part of immune system, providing immediate defence for the host against various infections through phagocytes. Toll-like receptors (TLRs) are major proteins expressed on the cell membrane known as pattern recognition receptors (PRR) that recognise non-self molecules (pathogen-associated molecular patterns (PAMPs)). Because TLRs have been implicated in many inflammatory diseases and cancer, TLRs targeted therapeutics have drawn great attention in clinical application in wide range of conditions. Many of them are undergoing evaluation in clinical trials. Chitin is the second most abundant polysaccharide detected in many insects and fungi. Studies have shown that chitin, as major PAMPs in host-infection, can activate TLR2-dependent innate immunity pathway. Therefore, chitin has potential use as an important agonist or antagonist to control key processes in innate immunity. However, no direct evidence has shown that chitin is the direct target of TLR2. This study first demonstrates a binding model of chitin and TLR2 and then confirmed its stability by molecular dynamic simulation and MM/PBSA (molecular mechanics/Poisson?Boltzmann surface area) calculations. The binding between chitin and TLR2 was taken place inside the binding pocket. Two hydrogen bonds were formed between chitin and TLR2, including Ser320 and Lys321. The van der Waals interaction has the major contribution in stabilising the binding of the chitin molecule with the protein. This study also suggests six hot-spots for specific binding of chitin in the binding site of TLR2, namely, Phe296, Phe299, Leu302, Thr309, Ser320 and Val322. Molecular dynamics simulation demonstrates that the complex of chitin and TLR2 is very stable with a total binding affinity of ?27.2 kcal/mol from MM/PBSA calculation.  相似文献   

14.
How Location Governs Toll-Like Receptor Signaling   总被引:2,自引:0,他引:2  
Toll-like receptors (TLRs) are a family of innate immune system receptors responsible for recognizing conserved pathogen-associated molecular patterns (PAMPs). PAMP binding to TLRs initiates intracellular signaling pathways that lead to the upregulation of a variety of costimulatory molecules and the synthesis and secretion of various cytokines and interferons by cells of the innate immune system. TLR-induced innate immune responses are a prerequisite for the generation of most adaptive immune responses, and in the case of B cells, TLRs directly regulate signaling from the antigen-specific B-cell receptor. The outcome of TLR signaling is determined, in part, by the cells in which they are expressed and by the selective use of signaling adaptors. Recent studies suggest that, in addition, both the ligand recognition by TLRs and the functional outcome of ligand binding are governed by the subcellular location of the TLRs and their signaling adaptors. In this review we describe what is known about the intracellular trafficking and compartmentalization of TLRs in innate system's dendritic cells and macrophages and in adaptive system's B cells, highlighting how location regulates TLR function.  相似文献   

15.
The innate immune system evolved to recognize conserved microbial products, termed pathogen-associated molecular patterns (PAMPs), which are invariant among diverse groups of microorganisms. PAMPs are recognized by a set of germ-line encoded pattern recognition receptors (PRRs). Among the best characterized PAMPs are bacterial lipopolysaccharide (LPS), peptidoglycan (PGN), mannans, and other constituents of bacterial and fungal cell walls, as well as bacterial DNA. Recognition of bacterial DNA is the most enigmatic of these, as it depends on a particular sequence motif, called the CpG motif, in which an unmethylated CpG present in a particular sequence context accounts for a potent immunostimulatory activity of CpG DNA. Receptor(s) of the innate immune system that mediate recognition of CpG DNA are currently unknown. Here, we report that recognition of CpG DNA requires MyD88, an adaptor protein involved in signal transduction by the Toll-like receptors (TLRs), essential components of innate immune recognition in both Drosophila and mammals [1,2]. Signaling induced by CpG DNA was found to be unaffected in cells deficient in TLR2 or TLR4, suggesting that some other member of the Toll family mediates recognition of bacterial DNA.  相似文献   

16.
Research into intracellular sensing of microbial products is an up and coming field in innate immunity. Toll-like receptors (TLRs) recognize Brucella spp. and bacterial components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella infection. TLR2, TLR4 and TLR9 have been implicated in host interactions with Brucella; however, TLR9 has the most prominent role. Further, the relationship between specific Brucella molecules and various signal transduction pathways needs to be better understood. MyD88-dependent and TRIF-independent signaling pathways are involved in Brucella activation of innate immune cells through TLRs. We have recently reported the critical role of MyD88 molecule in dendritic cell maturation and interleukin-12 production during B. abortus infection. This article discusses recent studies on TLR signaling and also highlights the contribution of NOD and type I IFN receptors during Brucella infection. The better understanding of the role by such innate immune receptors in bacterial infection is critical in host-pathogen interactions.  相似文献   

17.
Toll is the founder of a group of pattern recognition receptors, which play a critical role in the innate immunity in Drosophila. At least 13 distinct Toll-like receptors (TLRs), recognising pathogen-associated molecular pattern (PAMPs), have now been identified in humans. Most investigations on TLRs have focused on cells of the innate system. We report here that na?ve human T cells expressed high levels of cell surface TLR2 after activation by anti-T cell receptor (TCR) antibody and interferon-alpha. Activated cells produced elevated levels of cytokines in response to the TLR2 ligand, bacterial lipopeptide (BLP). Furthermore, CD4(+)CD45RO(+) memory T cells from peripheral blood constitutively expressed TLR2 and produced IFNgamma in response to BLP. BLP also markedly enhanced the proliferation and IFNgamma production by CD45RO(+) T cells in the presence of IL-2 or IL-15. Thus, TLR2 serves as a co-stimulatory receptor for antigen-specific T cell development and participates in the maintenance of T cell memory. This suggests that pathogens, via their PAMPs, may contribute directly to the perpetuation and activation of long term T cell memory in both antigen dependent and independent manner.  相似文献   

18.
In addition to its clean-up function, autophagy is considered as an innate immunity mechanism due to its role in the removal of intracellular pathogens. Toll-like receptors (TLRs) are crucial components of innate immunity involved in the recognition of a diverse array of microbial products. Recent works demonstrated that different pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) and single-strand RNA are able to induce autophagy via different TLRs in immune cells. In a recent report, we showed that bacterial CpG motifs, another PAMP, can induce autophagy in rodent and human tumor cell lines and that this process is TLR9-dependent. In addition, an increase in the number of autophagosomes can also be observed in vivo after the intratumoral injection of CpG motifs. These results extend the link between TLRs and autophagy to non-immune tumor cells and may be relevant for cancer treatment and more generally for gene therapy approaches in TLR9-positive tissues. In this addendum, we discuss the potential mechanisms and the consequences of the CpG-induced autophagy in tumor cells.  相似文献   

19.
Toll样受体信号转导途径研究进展   总被引:14,自引:0,他引:14  
Toll样受体(Toll-like receptors,TLRs)属于模式识别受体(pattern recognition receptors,PRRs)家族,识别高度保守的微生物组分-病原相关分子模式(pathogen-associated molecular pat-terns,PAMPS)。迄今为止,在人类基因组中已发现10个Toll样受体。这些受体通过感知不同的微生物刺激,招募特异接头蛋白,激活一系列信号级联反应,引发针对病原体的特异性免疫应答,是连接天然免疫和适应性免疫应答的桥梁。哺乳动物Toll样受体的发现引领天然免疫的研究进入飞速发展的时代。本文将对Toll样受体信号转导途径的最新进展作一综述,以便更好地理解Toll样受体介导的分子免疫机制,这将有助于研发免疫治疗的分子靶标,最终有效预防、控制Toll样受体介导的疾病。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号